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Computer Networks
§ Networks provide connectivity between end-systems

• Use for remote access, data transfers, control, etc.

§ Networking requires common protocols for communication

client

server

network



Tilman Wolf 3

Computer Networks
§ Success of the Internet: hourglass architecture

• Very basic services (connectivity, bit pipes, etc.)
• Highly diverse set of applications “on top”

§ Success is also a problem
• Diverse applications, diverse systems

§ Changing requirements for 
network layer
• New network functionality

− Security, quality-of-service, multicast, 
reliability, etc.

• New communication paradigms
− Content distribution, content addressable networks, data aggregation, etc.

• Application-layer processing in network
− Payload transcoding, content-based load balancing, etc.

Layered protocol 
stack

Physical layer

Link layer

Network layer

Transport layer

Application layer

IP

UDP TCP

HTTP

TLS/SSL

DNS BGP

SIP

Ethernet

DSL FDDI

1000BASE-T

SONET/SDH802.11a/b/g/n

RS-232

...

...

...

...

Example protocols
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Extended Network Functionality
§ Extensions to current Internet

• New functionality in routers
− Firewalls, network address translation
− Intrusion detection systems
− Traffic shaping
− Etc. 

§ Customization of data plane
• Complex per-packet protocol 

processing operation 
• Deployment of new features at runtime
• Vendors may compete on features

§ Requires routers with ability to adapt
• Programmability is necessary

`

End system:
- IP security
- TCP termination

Server:
- Content-based
  switching
- Firewall
- SSL termination
- IP security

Access router:
- Access concentration 
  (cable, DSL, wireless)
- Network address translation
- Policy-based QoS
- Monitoring and billing
- Firewall

Edge router:
- Packet classification
- QoS (DiffServ)
- monitoring and billing 

Core router:
- Multiprotocol label switching
- QoS aware routing
- Monitoring
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Packet Processing on Router
§ Protocol processing operations implemented on input port

• Application-Specific 
Integrated Circuit 
(ASIC) for simple 
protocols

• ASICs is fast, but
fixed functionality

input ports switch fabric output ports
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output port
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Programmable Router
§ Flexibility through programmable network processor

• General-purpose processing capability in data path
• Packet processing in software

§ High-performance 
processing hardware
• Scalability through high

levels of parallelism
§ Example: 40-core 

network processors

§ Key challenge:
• Security is critical for

network infrastructure 
• Vulnerabilities due 

to software processing

Router

Switching
Fabric

PortPort

Port

Port

Port

Network Processor
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Engine

Processing 
Engine

Processing 
Engine

I/O

packets

Interconnect

Protocol 
processing 
on network 
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Middleboxes and Network Appliances
§ Processing also on middleboxes and network appliances

• Standalone nodes (e.g., server-type processor)
§ Used with Software-Defined Networking (SDN)

• Network function virtualization (NFV)
§ Similar processing environment

• Throughput performance 
important

• Limited resources 
to detect / protect 
from attacks

§ This talk focuses
on network
processors

`
` NF

SDN controller

switch
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Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions
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Network Attack Classification
§ Programmable data plane introduces new type of attack

• Hacking of packet processing engine on router 
• Attack targets network infrastructure

`
`

End-system

Goal of attack

Data access and 
modification

Data access and 
modificaiton

Denial-of-service

Denial-of-service

Control plane

Data access and 
modificaiton

Data plane

Attack examples

Hacking, phishing, 
espionage, etc.

Malicious route 
announcement, DNS 
cache poisoning, etc.

DNS recursion attack, 
etc.

Denial-of-service attack 
via botnets, etc.

Eavesdropping, man-in-
the-middle attack, etc.

Defenses

Secure routing 
protocols (with 
cryptographic 

authentication), secure 
DNS (DNSSEC), etc.

Virus scanner, firewall, 
network intrusion 

detection system, etc.

Secure network 
protocols (IPSec, TLS), 

etc. 

Denial-of-service Exploit of vulnerable 
packet processing code

Processing monitor, 
etc.

Focus of this work

Attack target
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Exploit of Vulnerable Network Processor
§ Vulnerability can be exploited to launch attack
§ “In-network” denial of service attack

• Router has access to many links with 
high data rates

• Potentially devastating impact
§ Key questions

• Can such vulnerabilities occur
in packet processing code?
(Yes, we show one example.)

• Can vulnerabilities be exploited
to launch DoS attack?
(Yes for one processor type;
no for another (crashed instead))

Unprotected 
software-based 

router

Vulnerable 
packet 

processor

Packet 
forwarding 
software

Malicious 
packet

In-network 
denial of 
service 
attack
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Attack Type
§ Overflow attacks

• Malicious data exploits vulnerable code
• Often leads to attacker executing arbitrary code
• Can be exploited via network

§ National Vulnerability Database (late 2014)
• 66,399 vulnerabilities total
• 6,518 vulnerabilities that exploit “overflows” via network (approx. 10%)

§ End-system vulnerabilities can be detected
• Virus scanner on end-system
• Content-inspection firewalls in network

§ Packet processors need custom protection
• No processing power for virus scanner
• No protection from firewall inside network core
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Example of Data Plane Vulnerability
§ Many different potential vulnerabilities

• We focus on one example to show that it is possible
• Specific attack depends on system, software, etc.

§ Requirements
• Vulnerability must be in packet processing code
• Vulnerability must be triggered by data packet

§ Protocol processing: header insertion
• Congestion management (CM) protocol

ETH
hdr

IP
hdr

UDP
hdr

Original 
packet

payload

CM 
header

ETH
hdr

IP
hdr

UDP
hdr payloadCM

hdr
New 

packet
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Header Insertion Vulnerability
§ Vulnerability based on stack smashing attack

• Exploit of integer 
overflow
− Sum is 4 (not 65540)

§ Vulnerable code in networking context
• Carefully crafted shifting of packet content:

− Check if enough
room for shift

− Perform memcpy
• Problem: 

− Attack can send short, malformed UDP packet (length field of 65532)
− Integer overflow can occur on check

Thus, 
− Memory copy of 65532 bytes will overwrite outside boundaries of packet

ETH
hdr

IP
hdr

UDP
hdr payloadCM

hdr

le
n2

le
n1
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Header Insertion Exploit
§ Memory copy causes stack overwrite

• Return address from 
function call can be 
changed 

• Control flow can be 
redirected to attack code 

• If separate instruction and 
data memory (Harvard 
architecture) use 
return-to-libc attack

§ Example Attack code: 
infinite transmission loop
• Self-propagating 

denial-of-service attack

.

.

.

Packet payload
(attack code)

New pkt buffer

Local var

.

.

.

Return address

Stack 
growth

New
stack 

pointer

Low address

High address

Current
framePrevious frame ptr

Current 
frame ptr

(generate 
CM header)

Original packet hdr
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Header Insertion Exploit
§ Prototype implementation

• Custom network processor on NetFPGA
• Packet forwarding with vulnerable code
• Malicious packet injected into benign background traffic

§ Single malicious packet triggers attack at full link rate!

§ Attack has not yet been shown on commercial system
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Header Insertion Exploit
§ Ability to exploit vulnerability depends on processor system

• Previous result: custom ARM-based packet processor
• Other system: Click modular router on Linux system

− Stack smashing crashes router, but could not create DoS attack

§ Main observation: software on NP can be attacked
• Exploits can happen through data plane only

§ Need to develop defense mechanisms for router systems
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Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 18

Defense Mechanism for Processors
§ Software-based defenses (e.g., virus scanner)

• High processing overhead
• Processing requirement is proportional to input/output operations
• Scanning for known attacks is reactive, not proactive

§ Hardware-based defenses more suitable
• Defense mechanism can be separated from data plane

− Makes it more difficult to circumvent
• Performance impact on packet processor is small
• Challenge is to make it dynamically adaptable

− Needs to work for new packet processing functions

§ We have designed and prototyped hardware defense for NP
• Hardware monitor tracks processor
• Deviation from “normal behavior” due to attack can be detected
• Reset operation recovers system
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Related Work
§ Monitor-based defense mechanism for embedded systems

• Aurora et al., DATE 2005
• Ragel et al. DAC 2006
• Zambreno et al., TECS 2005
• Our monitor uses finer-grained monitoring for faster detection

− More details in Mao and Wolf, TC 2010

§ Processor-based defense mechanisms
• No eXecute (NX) bit (creates virtual Harvard architecture)
• Depends on processor architecture

§ Network-based defense mechanisms
• Attack signature in intrusion-detection systems (e.g., snort, bro)
• Problem with system homogeneity and IDS only at network edge
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System Architecture
§ Hardware monitor

co-located with
each processor core
• Core reports hash of

each executed instruction
§ Monitoring graph repre-

sents correct behavior
• Obtained from offline

analysis of binary
• Deviations trigger reset

§ Change of software easy
• Just need matching 

monitoring graph
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Offline Analysis of Processing Binary
§ Executed instruction reported by core as 4-bit hash

• Hash combines address, opcode, registers
• Hash allows for compact representation of information

§ Monitoring graph
• Each instruction represented as a state
• Edges correspond to execution of instruction
• Control-flow operations lead to multiple possible next states

 […]
 49c: 97c20010 lhu v0,16(s8)
 4a0: 00000000 nop
 4a4: 2c420033 sltiu v0,v0,51
 4a8: 1440000a bnez v0,4d4
 4ac: 00000000 nop
 4b0: 3c026666 lui v0,0x6666
 4b4: 34430191 ori v1,v0,0x191
 4b8: 97c20010 lhu v0,16(s8)
 […]

49c

4a0

4a4

4a8

4ac

4b0

4b4

4b8

0
7

11
10

10
7

3

6

4d4
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Implementation Cost of Monitor
§ Monitor requires additional logic

and memory resources
§ Comparison logic tracks hash value

• Simple logic to follow control flow in processor
§ Graph memory stores hash for each

instruction
• Approximately 4 bits for each 32-bit instruction
• Fraction of size of application binary

§ Examples from NpBench
• Hundreds to thousands of instructions only



Tilman Wolf 23

NFA-to-DFA conversion
§ Problem: non-deterministic finite automaton (NFA)

• State may have two next states with same edge value due to hash

• Implementation would need to keep track of multiple states
§ Solution: NFA-to-DFA conversion (powerset construction)

• Well-known algorithm [Hopcroft and Ullman, 1976]

• Deterministic finite automaton (DFA) requires only one state

1 2 3 4 5
b c d e f

c

6
a

61
a

2
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4
d

5
e f
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Implementation of DFA Monitor
§ Need to design effective DFA traversal mechanisms
§ Requirements

• Compact representation
• Fast processing of each hash value (single memory access)

§ Each state may have up to 16 next states
• Most states only have one or two next states

§ Idea: grouping of states by number of outgoing edges of 
previous state

d g
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Implementation of DFA Monitor
§ DFA monitor system

• Memory keeps all valid hash values in one bit vector
• Next state based on offset of group and position of hash value

2

number of 
next states

0

offset in 
state group

0000 0000 1000 0100

valid hash values on 
outgoing edges 

2 1 0000 1000 0000 1000
1 1 0000 0000 1000 0000
1 0 0000 0010 0000 0000
3 0 0000 0000 0010 0101
... ... ...
1 0 0000 0010 0000 0000
... ... ...
... ... ...

a
c
b
f
e
d
f
h
g

group 1

group 2

group 3

0x0000
0x0002
0x0006

...

group 1
group 2
group 3

group 16

...

group base 
address

-1

mult

add

...

k
(position of 

matching hash 
among valid 
hash values)

one-hot 
encoding

...

hash 
compari-

son

...

4-bit hash 
function

processor 
instruction

reset/
recovery

32 32

4

4

16

16

4

4
16

1

state machine memory
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Evaluation
§ Monitoring lookup speed

• Single memory access plus lookup into fixed-size register file
§ Memory size of monitor

• More states due to NFA-to-DFA conversion
• More states due 

to multiple 
entries in 
memory for 
certain states

• In practice, 
overhead is 
below 10%
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Timing Diagram
§ Attack without monitor

• Attack packet is forwarded on all ports

53 

6.2. Experimental results 

6.2.1. Attack Detection 

This section explains the experiments performed to test the ability of our proposed 

security monitoring system to detect and recover from an attack. We observed the security 

monitor operation in simulation using the ModelSim-Altera simulator [41], and in hardware 

using an Altera Signal-tap logic generator [56]. 

6.2.1.1. Network processor without security monitor 

We initially tested the single-core network processor operation without the security 

monitor system when the attack described in section 5.1 is implemented. Figure 34 shows the 

simulation results for the behavior of the processor system. The attack packet was received 

through MAC port Rx0, and then forwarded to the network processor. The processor then 

forwards the attack packet to all the outgoing ports of the router and then crashes the router. 

This behavior was also verified in hardware. 

Figure 34: Simulation waveform showing attack packet propagation in the network 
processor system.   

6.2.1.2. Network processor with security monitor 

We then repeated the previous experiment after including the security monitor as 

illustrated in Figure 26. Figure 35 shows the simulation results for the behavior of the 

network processor system when an attack packet and normal packet are sent simultaneously. 
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Timing Diagram
§ Monitor works as expected

• Attack packet is detected and dropped
• Later normal packet is forwarded
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Attack with Defense in Place
§ Attack packet dropped, router continues to operate
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Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions



Tilman Wolf 31

Multicore Monitor
§ Dynamic workloads pose problem for

hardware monitor
• Processing may differ between packets
• Monitors need to match processing

§ Mapping between processors and monitors
• 1-to-1 mapping requires frequent reload of monitor
• Any-to-any mapping costly to implement
• Clusters with n-to-m mapping provide balance

§ Interconnect is configured dyna-
mically depending on workload
• Mapping between core and

monitor

core

monitor

core

monitor

core

monitor

core

monitor...

...

core core core

monitor monitor monitor monitor

...

...

core core

monitor monitor monitor

...

core core

monitor monitor monitor

...

...

...

...
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System Architecture of Clustered System
§ Multiple cores can access multiple monitors

• Dynamic configuration of crossbar
§ Secure loading of monitors through external interface

Proc Proc Proc... Proc Proc Proc

...

Proc Proc Proc...

n Processors

Inter-core
Interconnect

External 
Memory

Crossbar Crossbar Crossbar

Mon Mon Mon...

m Monitors

Mon Mon Mon... Mon Mon Mon...

... ...

AES
Centralized

Monitor
Memory

Control 
Processor

 

...

External 
Interface

Control
Signals

Network 
Interface
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Cluster Design
§ Simple implementation of clustered monitor

• Dynamic configuration through programming of demultiplexers
NP Core
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Dual-Ported Monitor Implementation
§ Memory of monitor can be shared between two monitors

• Effective use of dual-ported memory
• Two monitoring graphs can be used in parallel
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Runtime Monitor Allocation
§ How many monitors per cluster?

• Number of monitors m, number of processor cores n
§ Analytical model

• Blocking occurs
when no monitor
is available for
given packet
processing

• Two programs
with equal
traffic and workload
assumed

§ Overprovisioning
of 1.5 is sufficient
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Prototype Implementation on FPGA
§ Multi-core system (4 cores, 6 monitors)

• Monitor logic very simple
• Interconnect uses very little resources
• Monitors require about 1/3 of memory of processors
• Monitors require about 1/8 of power of processors
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Runtime Operation
§ Adaptation based on threshold in queue for application
§ Simulation results

• Monitor allocation adapts to dynamics in traffic
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Runtime Operation
§ Simulation results

• Throughput variation due to adaptation
• Small inefficiencies during workload change
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Graph Loading Times
§ Time to load graph depends on application size
§ Results from NpBench
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Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions
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Extension: Infrastructure Diversity
§ System-level challenges

• Dynamics: runtime verification of monitoring graphs
− Network traffic and functionality change at runtime
− Multiple processor cores and 

their monitors need to be 
reprogrammed based on the 
traffic

• Homogeneity: parameterizable
hashing for heterogeneity
− Practical networks use large 

numbers of identical router 
devices

− A successful attack on one 
device can lead to 
Internet-scale failures
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Security Loading of Monitoring Graph
§ Three entities:

• Router 
manufacturer

• Network operator
• Router/network 

processor
§ Signatures on graph

establish chain of
trust
• Network processor

verifies authenticity
• Network operator

can install new 
graph
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Prototype Implementation on FPGA
§ Prototype system

• Altera Stratix IV 
FPGA on a DE4 
board 

• Nios II connects 
to a FTP server 
through OpenSSL

• Parameterizable
hash function in 
hardware monitor
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Security Operations Evaluation on Nios II
§ Secure download, decryption, and verification times 

• IPv4 with congestion management application 
• Verification takes several sections
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Parameterizable Hash Function
§ Merkle tree for hash 

function
• Can be parameterized
• High performance 

implementation in 
hardware

• Low resource overhead
§ Each network processor

can use a different 
parameter value
• Resulting monitoring

graph has different
hash values
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Hash Function Evaluation
§ Resource cost for hash function

• Compared to non-parameterizable hash function

§ Distribution of hash values in Merkle tree
• Random distribution of Hamming distance for almost all inputs
• Hash function requires zero Hamming distance for same inputs
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Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions
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Extension: Operating System in ES
§ Coordination between embedded OS and monitor

• Multiple active
processes in OS,
multiple active
monitoring graphs

• Monitor switches
monitoring graphs
in sync with OS
processes

• Requires minor
extension to OS

§ Prototype:
• NIOS II processor
• μC/OS-II operating 
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Processor-to-Monitor Interface
§ OS on processor needs to coordinate with monitors

• Process creation (ensure monitoring graph is ready)
• Context switch between processes (switch monitoring graph)
• Process deletion (remove monitoring state)
• Reset signal from monitor

§ A set of five registers to communicate with the processor
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Operating System Support
§ Hardware monitoring logic tracks OS operations
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Operating System Support
§ Context switch interactions:

§ Attack detection:

Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected 

Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected 

void process_input(char *stringpassed) {
char name[90];
strcpy(name,stringpassed);
printf("Processing string .. !\n");
return;

}
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Operating System Support
§ Implementation cost on Stratix IV FPGA

§ Hardware monitoring can be used for embedded systems 
• Embedded systems are similarly performance constrained
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Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions
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Conclusions
§ Current and future Internet needs to meet new demands

• Flexibility is key to avoid ossification
• Deployment of new edge services requires programmable data plane

§ Programmable routers provide packet processing platform
• Systems problem: security vulnerabilities
• Attacks can be launched within data plane (i.e., not control access)
• Monitor-based hardware defense mechanism is effective

§ Our work has addressed many practical concerns
• Workload dynamics and secure installation of monitoring graphs
• System heterogeneity
• Extension to general embedded systems with operating systems

§ Exciting research area that spans computer networking, 
embedded systems, and system security
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