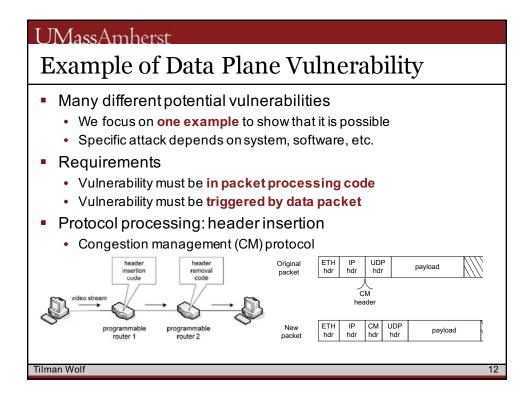
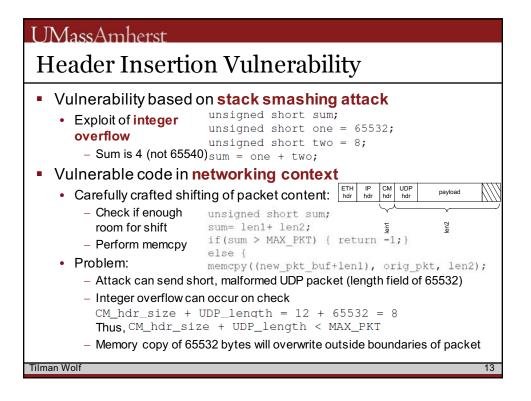
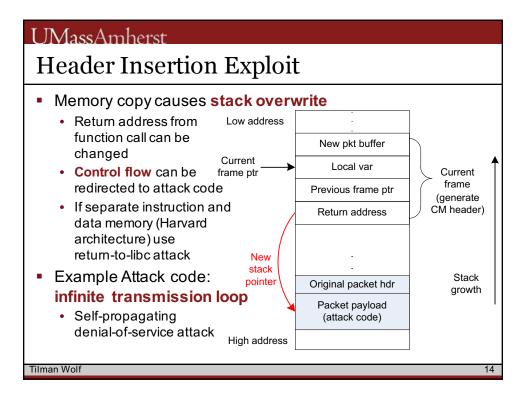


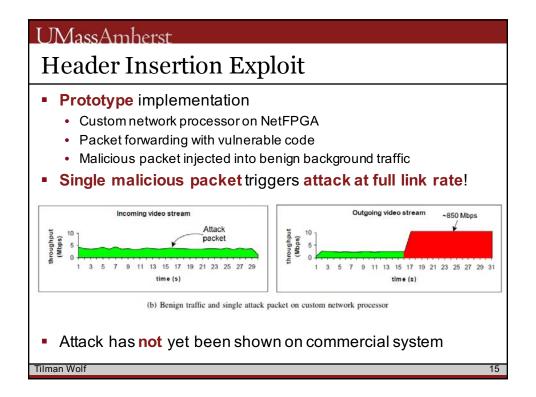
Outline

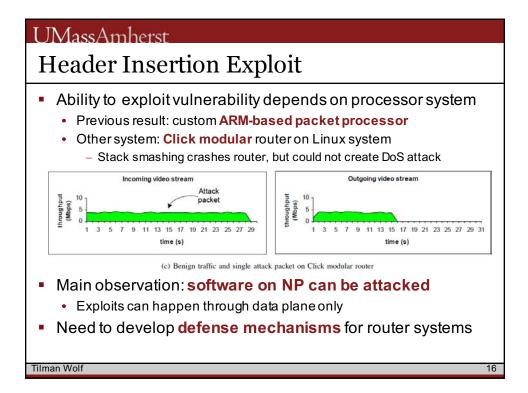
- Introduction
- Vulnerabilities
 - Example attack on network processor
- Defense mechanism
 - Hardware monitor
- Extensions
 - Multicore hardware monitor and dynamic workloads
 - Secure loading and avoiding homogeneity
 - Operating system support
- Conclusions

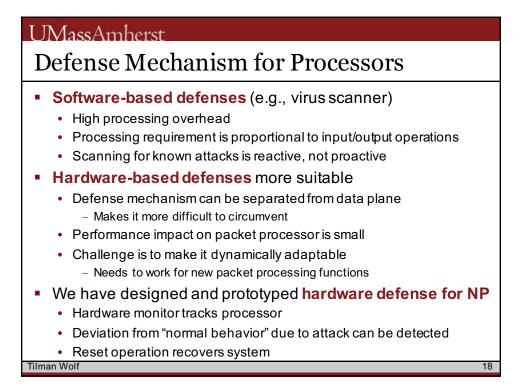



Attack Type

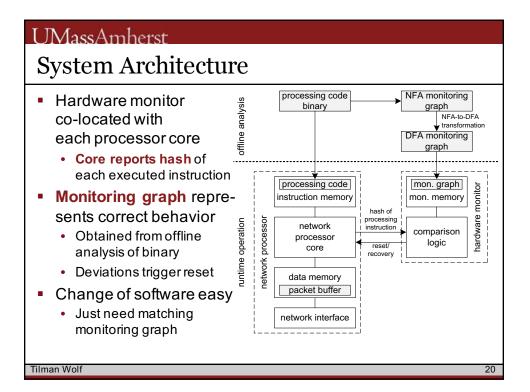

- Overflow attacks
 - Malicious data exploits vulnerable code
 - · Often leads to attacker executing arbitrary code
 - Can be exploited via network
- National Vulnerability Database (late 2014)
 - 66,399 vulnerabilities total
 - 6,518 vulnerabilities that exploit "overflows" via network (approx. 10%)

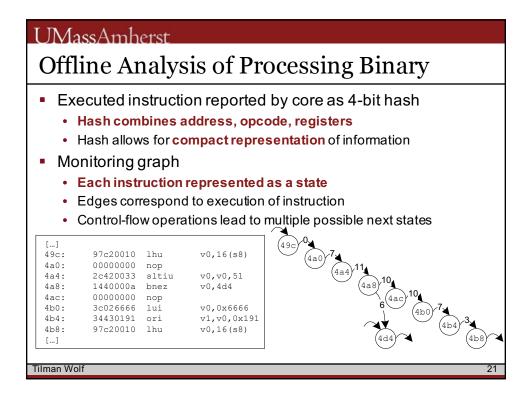

11


- End-system vulnerabilities can be detected
 - Virus scanner on end-system
 - Content-inspection firewalls in network
- Packet processors need custom protection
 - No processing power for virus scanner
 - No protection from firewall inside network core

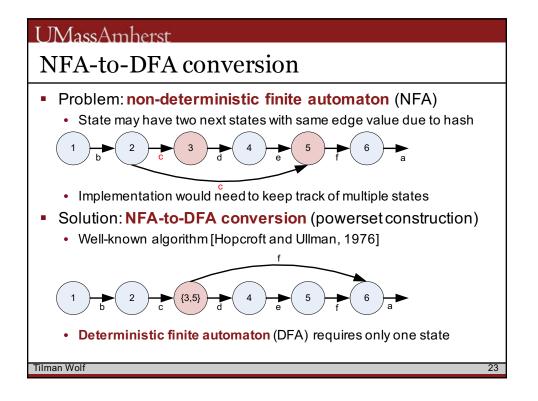


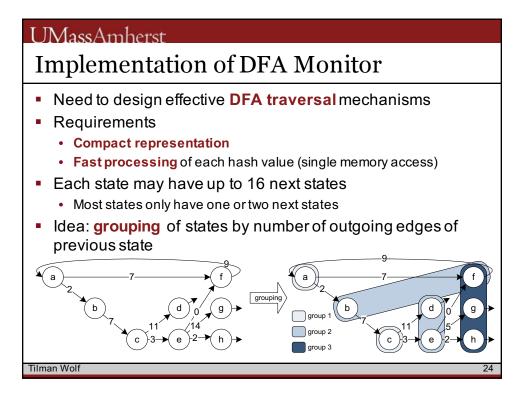
Outline

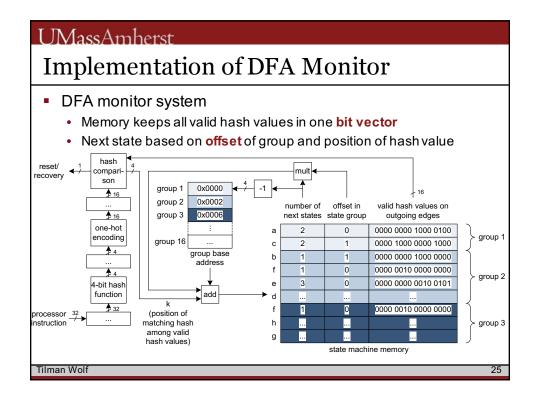

- Introduction
- Vulnerabilities
 - Example attack on network processor
- Defense mechanism
 - Hardware monitor
- Extensions
 - Multicore hardware monitor and dynamic workloads
 - · Secure loading and avoiding homogeneity
 - Operating system support
- Conclusions

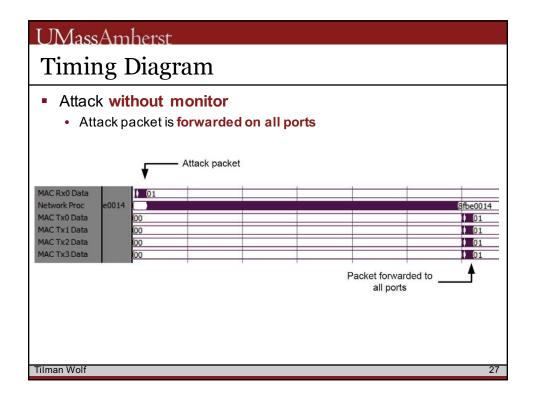


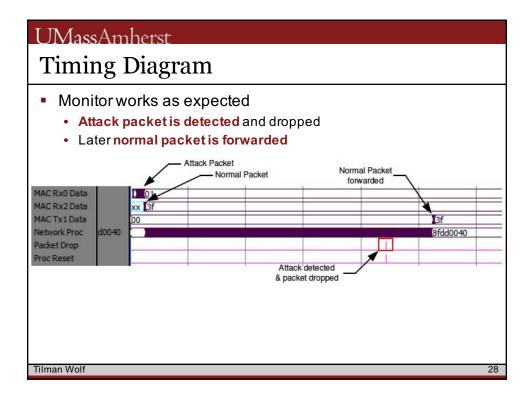
Related Work

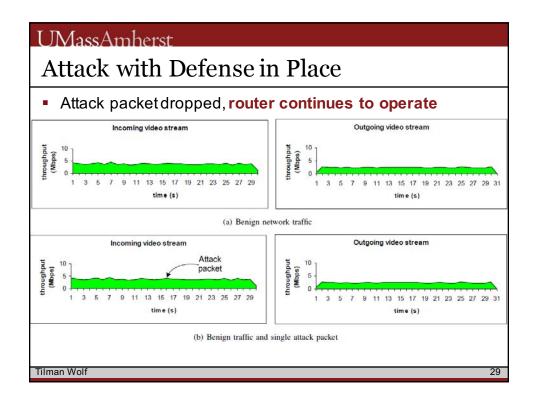

- Monitor-based defense mechanism for embedded systems
 - Aurora et al., DATE 2005
 - Ragel et al. DAC 2006
 - Zambreno et al., TECS 2005
 - Our monitor uses finer-grained monitoring for faster detection – More details in Mao and Wolf, TC 2010
- Processor-based defense mechanisms
 - No eXecute (NX) bit (creates virtual Harvard architecture)
 - Depends on processor architecture
- **Network-based** defense mechanisms
 - Attack signature in intrusion-detection systems (e.g., snort, bro)
 - Problem with system homogeneity and IDS only at network edge

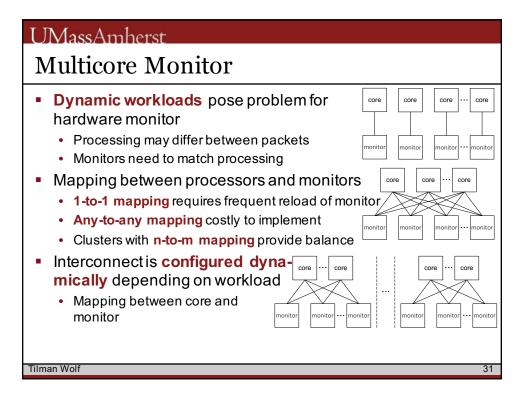

19

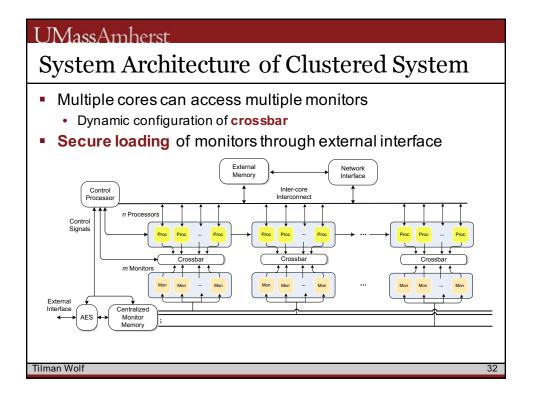


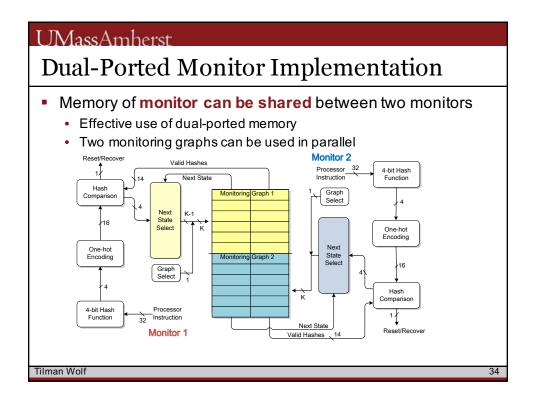

UMassAmherst					
Implementation Cost of Monitor					
 Monitor requires additional logic and memory resources Comparison logic tracks hash value Simple logic to follow control flow in processor Graph memory stores hash for each instruction Approximately 4 bits for each 32-bit instruction Fraction of size of application binary Examples from NpBench Hundreds to thousands of instructions only 	Netw. appli- cation crc frag red md5 ssld wfq mtc wfq mtc mpls- upstr. mpls- dwnstr.	No. of instr. 276 573 802 3,147 828 905 2,427 1,603 1,574			
Tilman Wolf		22			

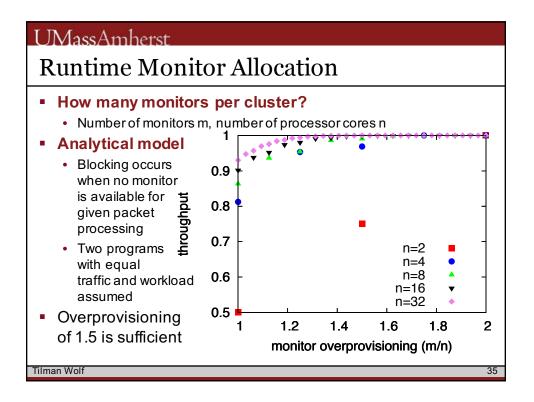


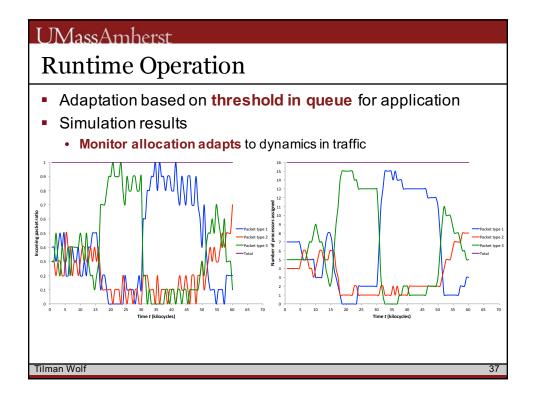


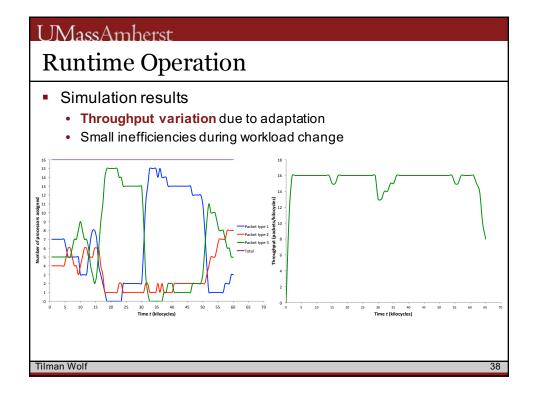

UMassAmherst							
Evaluation							
 Monitoring lookup speed Single memory access plus lookup into fixed-size register file Memory size of monitor More states due to NFA-to-DFA conversion 							
More states due to multiple	Netw. appli- cation	No. of instr.	NFA states	Max. mem. access	DFA states	Mem. entries	Mem. over- head
entries in memory for certain states	crc frag red	276 573 802	276 573 802	2 3 2	276 592 805	282 622 847	2.2% 8.6% 5.6%
 In practice, overhead is 	md5 ssld	3,147 828	3,147 828	8	3,173 829	3,228 854	2.6% 3.1%
below 10%	wfq mtc mpls-	905 2,427 1,603	905 2,427 1,603	2 3 10	914 2,460 1,621	953 2572 1,753	5.3% 6.0% 9.4%
	upstr. mpls- dwnstr.	1,574	1,574	12	1,582	1,706	8.4%
Tilman Wolf							26






UMassAmherst Outline	
 Introduction Vulnerabilities Example attack on network processor Defense mechanism Hardware monitor 	
 Extensions Multicore hardware monitor and dynamic workloads Secure loading and avoiding homogeneity Operating system support Conclusions 	
Tilman Wolf	30





UMassAmherst						
Prototype Implementation on FPGA						
 Mult 	 Multi-core system (4 cores, 6 monitors) 					
• M	onitor logic very	/ simple				
• In	iterconnect use	s very little res	sources			
• M						
• M						
	Available	DE4	Network	SHMG		
	in FPGA	interface	processors	monitors	intrcon.	
LUTs	182,400	33,427	15,025	816	96	
	-1	67.8%	30.4%	1.7%	0.1%	
FFs	182,400	36,467	8,367	147	0	
Bits	14,625,792	2,263,888	2,097,134	786,432	0	
	-	44.0%	40.7%	15.3%	0%	
Pwr						
(mW)	- 1	1490.83	388.6	41.76	5.30	
L			IL	ГС 31.		
Tilman Wolf	Tilman Wolf 36					

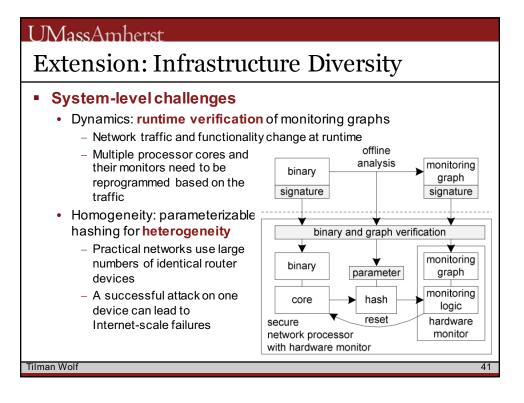
Graph Loading Times

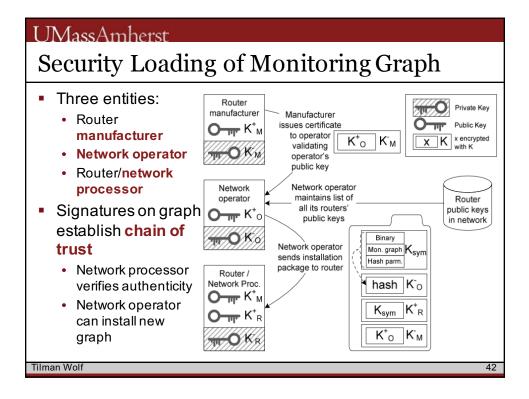
• Time to load graph depends on application size

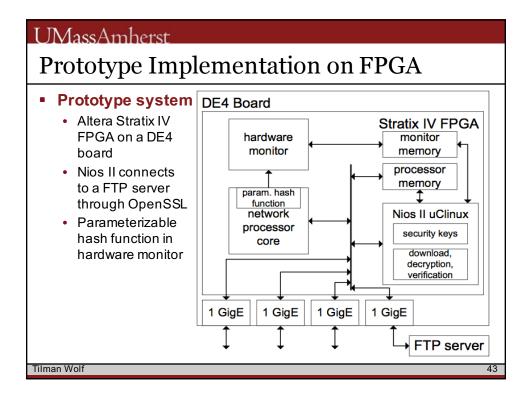
Results from NpBench

Network	Memory graph	Graph reload	Graph reload
benchmark	size (bits)	time (cycles)	time (μ s)
crc	8,460	529	2.64
frag	18,660	1,166	5.83
red	25,410	1,588	7.94
md5	96,840	6,052	30.26
ssld	25,620	1,601	8.01
wfq	28,590	1,787	8.93
mtc	77,160	4,822	24.11
mpls (up)	52,590	3,287	16.43
mpls (down)	51,180	3,199	15.99

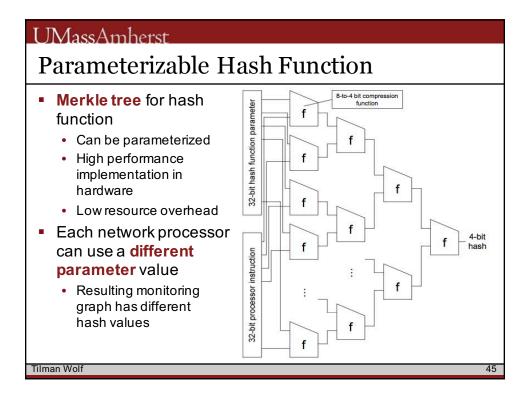
Tilman Wolf


UMassAmherst

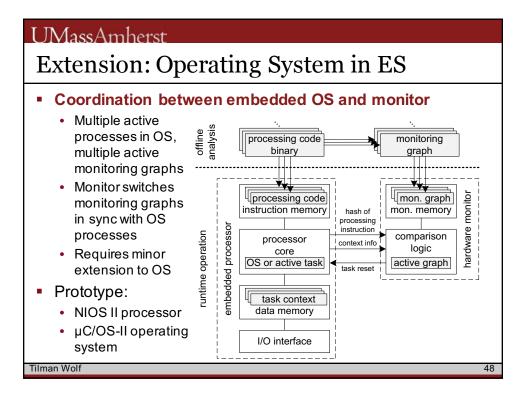

Outline


- Introduction
- Vulnerabilities
 - Example attack on network processor
- Defense mechanism
 - Hardware monitor
- Extensions
 - Multicore hardware monitor and dynamic workloads

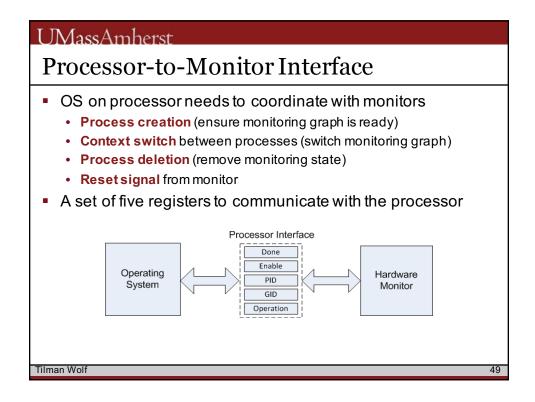
40

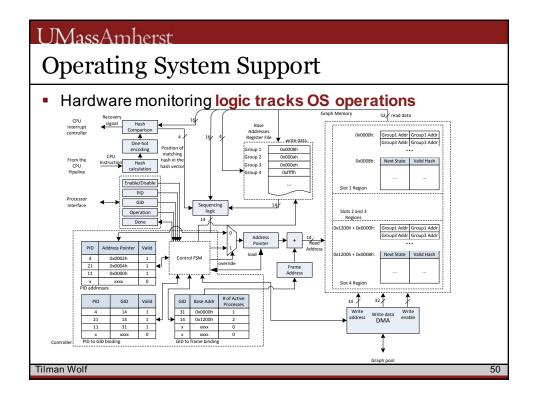

- Secure loading and avoiding homogeneity
- · Operating system support
- Conclusions

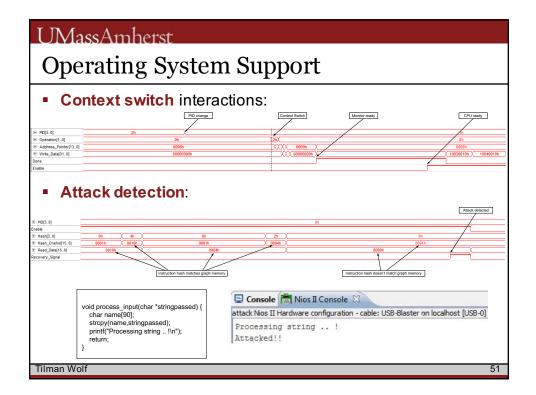
UMassAmherst				
Security Operations Evaluation on Nios II				
 Secure download, decryption, and verification IPv4 with congestion management application Verification takes several sections 	n times			
Step	Time (s)			
Download data from FTP server	1.90			
Check manufacturer certificate of network operator's public key K_O^+	3.33			
Decrypt AES key K_{sym} using router's private key K_{R}^{-}	8.74			
Decrypt package with AES key K_{sym}	7.73			
Verify packet signature with network operator's public key K_O^+	3.92			
Total	25.62			
Total (no networking or certificate check)	20.39			
Tilman Wolf		44		



UMassAmherst						
Hash Function Evaluation						
 Resource cost for hash function 						
 Compared to non 	-parameterizable h	ash function				
	Bitcount hash	Merkle tree hash				
LUTs	103	95				
FFs	61	61				
Memory bits	0	32				
 Distribution of hash values in Merkle tree 						
 Random distributi 	on of Hamming dist	tance for almost all inp	uts			
 Hash function req 	uires zero Hammin	g distance for same in	puts			
1						
	8 9 10 11 12 13 14 15 16 Hamming distance		27 28 29 30 31 32			
Tilman Wolf			46			


Outline


- Introduction
- Vulnerabilities
 - Example attack on network processor
- Defense mechanism
 - Hardware monitor
- Extensions
 - · Multicore hardware monitor and dynamic workloads
 - · Secure loading and avoiding homogeneity
 - Operating system support
- Conclusions


Tilman Wolf

47

	Available on FPGA	Nios II with no HW monitor	HW monitor and controller
LUTs	182,400	1,341	406
FFs	182,400	1,166	522
Mem. bits	14,625,792	2,108,416	524,512
Pwr (mW)	-	105.97	41.83
	•	be used for embe hilarly performance co	-

Outline

- Introduction
- Vulnerabilities
 - Example attack on network processor
- Defense mechanism
 - Hardware monitor
- Extensions
 - Multicore hardware monitor and dynamic workloads
 - Secure loading and avoiding homogeneity
 - Operating system support
- Conclusions

Tilman Wolf

UMassAmherst Conclusions Current and future Internet needs to meet new demands · Flexibility is key to avoid ossification • Deployment of new edge services requires programmable data plane Programmable routers provide packet processing platform Systems problem: security vulnerabilities Attacks can be launched within data plane (i.e., not control access) · Monitor-based hardware defense mechanism is effective Our work has addressed many practical concerns · Workload dynamics and secure installation of monitoring graphs System heterogeneity • Extension to general embedded systems with operating systems Exciting research area that spans computer networking, embedded systems, and system security Tilman Wolf 54

53

UMassAmherst **Selected Publications** Data plane attack: Danai Chasaki and Tilman Wolf. <u>Attacks and defenses in the data plane of networks</u>. IEEE Transactions on Dependable and Secure Computing, 9(6)798–810, November IEEE 2012. Danai Chasaki and Tilman Wolf. <u>Design of a secure packet processor</u>. In *Proc. of ACM/IEEE Symposium on Architectures for Networking and Communication Systems (ANCS)*, San Diego, CA, October 2010. Shufu Mao and Tilman Wolf. <u>Hardware support for secure processing in embedded</u> systems. *IEEE Transactions on Computers*, 59(6):847–854, June 2010. Harikrishnan Kumarapillai Chandrikakutty, Deepak Unnikrishnan, Russell Tessier, and Tilman Wolf. <u>High-performance hardware monitors to protect network processors from</u> data plane attacks. In *Proc. of 50th Design Automation Conference (DAC)*, Austin, TX, June 2013. Hardware monitors for network processors June 2013. Kekai Hu, Harikrishnan Chandrikakutty, Russell Tessier, and Tilman Wolf. <u>Scalable</u> <u>Hardware Monitors to Protect Network Processors from Data Plane Attacks</u>. In Proc. of *First IEEE Conference on Communications and Network Security (CNS)*, Washington, DC, October 2013. (Best Paper Award) Kekai Hu, Tilman Wolf, Thiago Teixeira, and Russell Tessier. <u>System-level security for</u> <u>network processors with hardware monitors</u>. In Proc. of 51st Design Automation Conference (DAC), San Francisco, CA, June 2014. Hardware monitors for embedded systems: Tedy Thomas, Arman Pouraghily, Kekai Hu, Russell Tessier, and Tilman Wolf. <u>Multi-task</u> support for security-enabled embedded processors. In Proc. of 26th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 136–143, Toronto, ON, July 2015.

Tilman Wolf

56

UMassAmherst	
Tilman Wolf	
<u>wolf@umass.edu</u>	
http://www.ecs.umass.edu/ece/wolf/	
Tilman Wolf	57