
Tilman Wolf
Department of Electrical and Computer Engineering

University of Massachusetts Amherst

October 7, 2016

Attacks and Hardware Defenses
for Network Infrastructure

Tilman Wolf 2

Computer Networks
§ Networks provide connectivity between end-systems

• Use for remote access, data transfers, control, etc.

§ Networking requires common protocols for communication

client

server

network

Tilman Wolf 3

Computer Networks
§ Success of the Internet: hourglass architecture

• Very basic services (connectivity, bit pipes, etc.)
• Highly diverse set of applications “on top”

§ Success is also a problem
• Diverse applications, diverse systems

§ Changing requirements for
network layer
• New network functionality

− Security, quality-of-service, multicast,
reliability, etc.

• New communication paradigms
− Content distribution, content addressable networks, data aggregation, etc.

• Application-layer processing in network
− Payload transcoding, content-based load balancing, etc.

Layered protocol
stack

Physical layer

Link layer

Network layer

Transport layer

Application layer

IP

UDP TCP

HTTP

TLS/SSL

DNS BGP

SIP

Ethernet

DSL FDDI

1000BASE-T

SONET/SDH802.11a/b/g/n

RS-232

...

...

...

...

Example protocols

Tilman Wolf 4

Extended Network Functionality
§ Extensions to current Internet

• New functionality in routers
− Firewalls, network address translation
− Intrusion detection systems
− Traffic shaping
− Etc.

§ Customization of data plane
• Complex per-packet protocol

processing operation
• Deployment of new features at runtime
• Vendors may compete on features

§ Requires routers with ability to adapt
• Programmability is necessary

`

End system:
- IP security
- TCP termination

Server:
- Content-based
 switching
- Firewall
- SSL termination
- IP security

Access router:
- Access concentration
 (cable, DSL, wireless)
- Network address translation
- Policy-based QoS
- Monitoring and billing
- Firewall

Edge router:
- Packet classification
- QoS (DiffServ)
- monitoring and billing

Core router:
- Multiprotocol label switching
- QoS aware routing
- Monitoring

Tilman Wolf 5

Packet Processing on Router
§ Protocol processing operations implemented on input port

• Application-Specific
Integrated Circuit
(ASIC) for simple
protocols

• ASICs is fast, but
fixed functionality

input ports switch fabric output ports

network
interface

packet
processing

system sw
itc

h
in

te
rfa

ce

network
interface

packet
processing

system sw
itc

h
in

te
rfa

ce

sw
itc

h
in

te
rfa

ce
sw

itc
h

in
te

rfa
ce

packet
processing

system

packet
processing

system

network
interface

network
interface

...

...

input port

output port

input port

output port

input port

output port

input port

output port

switch fabric

Tilman Wolf 6

Programmable Router
§ Flexibility through programmable network processor

• General-purpose processing capability in data path
• Packet processing in software

§ High-performance
processing hardware
• Scalability through high

levels of parallelism
§ Example: 40-core

network processors

§ Key challenge:
• Security is critical for

network infrastructure
• Vulnerabilities due

to software processing

Router

Switching
Fabric

PortPort

Port

Port

Port

Network Processor

N
et

w
or

k
In

te
rfa

ce Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

I/O

packets

Interconnect

Protocol
processing
on network
processor

Tilman Wolf 7

Middleboxes and Network Appliances
§ Processing also on middleboxes and network appliances

• Standalone nodes (e.g., server-type processor)
§ Used with Software-Defined Networking (SDN)

• Network function virtualization (NFV)
§ Similar processing environment

• Throughput performance
important

• Limited resources
to detect / protect
from attacks

§ This talk focuses
on network
processors

`
` NF

SDN controller

switch

Tilman Wolf 8

Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 9

Network Attack Classification
§ Programmable data plane introduces new type of attack

• Hacking of packet processing engine on router
• Attack targets network infrastructure

`
`

End-system

Goal of attack

Data access and
modification

Data access and
modificaiton

Denial-of-service

Denial-of-service

Control plane

Data access and
modificaiton

Data plane

Attack examples

Hacking, phishing,
espionage, etc.

Malicious route
announcement, DNS
cache poisoning, etc.

DNS recursion attack,
etc.

Denial-of-service attack
via botnets, etc.

Eavesdropping, man-in-
the-middle attack, etc.

Defenses

Secure routing
protocols (with
cryptographic

authentication), secure
DNS (DNSSEC), etc.

Virus scanner, firewall,
network intrusion

detection system, etc.

Secure network
protocols (IPSec, TLS),

etc.

Denial-of-service Exploit of vulnerable
packet processing code

Processing monitor,
etc.

Focus of this work

Attack target

Tilman Wolf 10

Exploit of Vulnerable Network Processor
§ Vulnerability can be exploited to launch attack
§ “In-network” denial of service attack

• Router has access to many links with
high data rates

• Potentially devastating impact
§ Key questions

• Can such vulnerabilities occur
in packet processing code?
(Yes, we show one example.)

• Can vulnerabilities be exploited
to launch DoS attack?
(Yes for one processor type;
no for another (crashed instead))

Unprotected
software-based

router

Vulnerable
packet

processor

Packet
forwarding
software

Malicious
packet

In-network
denial of
service
attack

Tilman Wolf 11

Attack Type
§ Overflow attacks

• Malicious data exploits vulnerable code
• Often leads to attacker executing arbitrary code
• Can be exploited via network

§ National Vulnerability Database (late 2014)
• 66,399 vulnerabilities total
• 6,518 vulnerabilities that exploit “overflows” via network (approx. 10%)

§ End-system vulnerabilities can be detected
• Virus scanner on end-system
• Content-inspection firewalls in network

§ Packet processors need custom protection
• No processing power for virus scanner
• No protection from firewall inside network core

Tilman Wolf 12

Example of Data Plane Vulnerability
§ Many different potential vulnerabilities

• We focus on one example to show that it is possible
• Specific attack depends on system, software, etc.

§ Requirements
• Vulnerability must be in packet processing code
• Vulnerability must be triggered by data packet

§ Protocol processing: header insertion
• Congestion management (CM) protocol

ETH
hdr

IP
hdr

UDP
hdr

Original
packet

payload

CM
header

ETH
hdr

IP
hdr

UDP
hdr payloadCM

hdr
New

packet

Tilman Wolf 13

Header Insertion Vulnerability
§ Vulnerability based on stack smashing attack

• Exploit of integer
overflow
− Sum is 4 (not 65540)

§ Vulnerable code in networking context
• Carefully crafted shifting of packet content:

− Check if enough
room for shift

− Perform memcpy
• Problem:

− Attack can send short, malformed UDP packet (length field of 65532)
− Integer overflow can occur on check

Thus,
− Memory copy of 65532 bytes will overwrite outside boundaries of packet

ETH
hdr

IP
hdr

UDP
hdr payloadCM

hdr

le
n2

le
n1

Tilman Wolf 14

Header Insertion Exploit
§ Memory copy causes stack overwrite

• Return address from
function call can be
changed

• Control flow can be
redirected to attack code

• If separate instruction and
data memory (Harvard
architecture) use
return-to-libc attack

§ Example Attack code:
infinite transmission loop
• Self-propagating

denial-of-service attack

.

.

.

Packet payload
(attack code)

New pkt buffer

Local var

.

.

.

Return address

Stack
growth

New
stack

pointer

Low address

High address

Current
framePrevious frame ptr

Current
frame ptr

(generate
CM header)

Original packet hdr

Tilman Wolf 15

Header Insertion Exploit
§ Prototype implementation

• Custom network processor on NetFPGA
• Packet forwarding with vulnerable code
• Malicious packet injected into benign background traffic

§ Single malicious packet triggers attack at full link rate!

§ Attack has not yet been shown on commercial system

Tilman Wolf 16

Header Insertion Exploit
§ Ability to exploit vulnerability depends on processor system

• Previous result: custom ARM-based packet processor
• Other system: Click modular router on Linux system

− Stack smashing crashes router, but could not create DoS attack

§ Main observation: software on NP can be attacked
• Exploits can happen through data plane only

§ Need to develop defense mechanisms for router systems

Tilman Wolf 17

Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 18

Defense Mechanism for Processors
§ Software-based defenses (e.g., virus scanner)

• High processing overhead
• Processing requirement is proportional to input/output operations
• Scanning for known attacks is reactive, not proactive

§ Hardware-based defenses more suitable
• Defense mechanism can be separated from data plane

− Makes it more difficult to circumvent
• Performance impact on packet processor is small
• Challenge is to make it dynamically adaptable

− Needs to work for new packet processing functions

§ We have designed and prototyped hardware defense for NP
• Hardware monitor tracks processor
• Deviation from “normal behavior” due to attack can be detected
• Reset operation recovers system

Tilman Wolf 19

Related Work
§ Monitor-based defense mechanism for embedded systems

• Aurora et al., DATE 2005
• Ragel et al. DAC 2006
• Zambreno et al., TECS 2005
• Our monitor uses finer-grained monitoring for faster detection

− More details in Mao and Wolf, TC 2010

§ Processor-based defense mechanisms
• No eXecute (NX) bit (creates virtual Harvard architecture)
• Depends on processor architecture

§ Network-based defense mechanisms
• Attack signature in intrusion-detection systems (e.g., snort, bro)
• Problem with system homogeneity and IDS only at network edge

Tilman Wolf 20

System Architecture
§ Hardware monitor

co-located with
each processor core
• Core reports hash of

each executed instruction
§ Monitoring graph repre-

sents correct behavior
• Obtained from offline

analysis of binary
• Deviations trigger reset

§ Change of software easy
• Just need matching

monitoring graph

network
processor

core

instruction memory

data memory
packet buffer

processing code

network interface

comparison
logic

mon. memory
mon. graph

ne
tw

or
k

pr
oc

es
so

r

ha
rd

w
ar

e
m

on
ito

r

hash of
processing
instruction

reset/
recovery

processing code
binary

NFA monitoring
graph

DFA monitoring
graph

NFA-to-DFA
transformation

of
fli

ne
 a

na
ly

si
s

ru
nt

im
e

op
er

at
io

n

Tilman Wolf 21

Offline Analysis of Processing Binary
§ Executed instruction reported by core as 4-bit hash

• Hash combines address, opcode, registers
• Hash allows for compact representation of information

§ Monitoring graph
• Each instruction represented as a state
• Edges correspond to execution of instruction
• Control-flow operations lead to multiple possible next states

 […]
 49c: 97c20010 lhu v0,16(s8)
 4a0: 00000000 nop
 4a4: 2c420033 sltiu v0,v0,51
 4a8: 1440000a bnez v0,4d4
 4ac: 00000000 nop
 4b0: 3c026666 lui v0,0x6666
 4b4: 34430191 ori v1,v0,0x191
 4b8: 97c20010 lhu v0,16(s8)
 […]

49c

4a0

4a4

4a8

4ac

4b0

4b4

4b8

0
7

11
10

10
7

3

6

4d4

Tilman Wolf 22

Implementation Cost of Monitor
§ Monitor requires additional logic

and memory resources
§ Comparison logic tracks hash value

• Simple logic to follow control flow in processor
§ Graph memory stores hash for each

instruction
• Approximately 4 bits for each 32-bit instruction
• Fraction of size of application binary

§ Examples from NpBench
• Hundreds to thousands of instructions only

Tilman Wolf 23

NFA-to-DFA conversion
§ Problem: non-deterministic finite automaton (NFA)

• State may have two next states with same edge value due to hash

• Implementation would need to keep track of multiple states
§ Solution: NFA-to-DFA conversion (powerset construction)

• Well-known algorithm [Hopcroft and Ullman, 1976]

• Deterministic finite automaton (DFA) requires only one state

1 2 3 4 5
b c d e f

c

6
a

61
a

2
b

{3,5}
c

4
d

5
e f

f

Tilman Wolf 24

Implementation of DFA Monitor
§ Need to design effective DFA traversal mechanisms
§ Requirements

• Compact representation
• Fast processing of each hash value (single memory access)

§ Each state may have up to 16 next states
• Most states only have one or two next states

§ Idea: grouping of states by number of outgoing edges of
previous state

d g

h

2

7

3
11

0
14
2

7
9

a

c e

grouping

group 1

group 2

group 3

f

b d g

h

2

7

3
11

0
5
2

7a

c e

f

b

9

Tilman Wolf 25

Implementation of DFA Monitor
§ DFA monitor system

• Memory keeps all valid hash values in one bit vector
• Next state based on offset of group and position of hash value

2

number of
next states

0

offset in
state group

0000 0000 1000 0100

valid hash values on
outgoing edges

2 1 0000 1000 0000 1000
1 1 0000 0000 1000 0000
1 0 0000 0010 0000 0000
3 0 0000 0000 0010 0101
...
1 0 0000 0010 0000 0000
...
...

a
c
b
f
e
d
f
h
g

group 1

group 2

group 3

0x0000
0x0002
0x0006

...

group 1
group 2
group 3

group 16

...

group base
address

-1

mult

add

...

k
(position of

matching hash
among valid
hash values)

one-hot
encoding

...

hash
compari-

son

...

4-bit hash
function

processor
instruction

reset/
recovery

32 32

4

4

16

16

4

4
16

1

state machine memory

Tilman Wolf 26

Evaluation
§ Monitoring lookup speed

• Single memory access plus lookup into fixed-size register file
§ Memory size of monitor

• More states due to NFA-to-DFA conversion
• More states due

to multiple
entries in
memory for
certain states

• In practice,
overhead is
below 10%

Tilman Wolf 27

Timing Diagram
§ Attack without monitor

• Attack packet is forwarded on all ports

53

6.2. Experimental results

6.2.1. Attack Detection

This section explains the experiments performed to test the ability of our proposed

security monitoring system to detect and recover from an attack. We observed the security

monitor operation in simulation using the ModelSim-Altera simulator [41], and in hardware

using an Altera Signal-tap logic generator [56].

6.2.1.1. Network processor without security monitor

We initially tested the single-core network processor operation without the security

monitor system when the attack described in section 5.1 is implemented. Figure 34 shows the

simulation results for the behavior of the processor system. The attack packet was received

through MAC port Rx0, and then forwarded to the network processor. The processor then

forwards the attack packet to all the outgoing ports of the router and then crashes the router.

This behavior was also verified in hardware.

Figure 34: Simulation waveform showing attack packet propagation in the network
processor system.

6.2.1.2. Network processor with security monitor

We then repeated the previous experiment after including the security monitor as

illustrated in Figure 26. Figure 35 shows the simulation results for the behavior of the

network processor system when an attack packet and normal packet are sent simultaneously.

Tilman Wolf 28

Timing Diagram
§ Monitor works as expected

• Attack packet is detected and dropped
• Later normal packet is forwarded

Tilman Wolf 29

Attack with Defense in Place
§ Attack packet dropped, router continues to operate

Tilman Wolf 30

Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 31

Multicore Monitor
§ Dynamic workloads pose problem for

hardware monitor
• Processing may differ between packets
• Monitors need to match processing

§ Mapping between processors and monitors
• 1-to-1 mapping requires frequent reload of monitor
• Any-to-any mapping costly to implement
• Clusters with n-to-m mapping provide balance

§ Interconnect is configured dyna-
mically depending on workload
• Mapping between core and

monitor

core

monitor

core

monitor

core

monitor

core

monitor...

...

core core core

monitor monitor monitor monitor

...

...

core core

monitor monitor monitor

...

core core

monitor monitor monitor

...

...

...

...

Tilman Wolf 32

System Architecture of Clustered System
§ Multiple cores can access multiple monitors

• Dynamic configuration of crossbar
§ Secure loading of monitors through external interface

Proc Proc Proc... Proc Proc Proc

...

Proc Proc Proc...

n Processors

Inter-core
Interconnect

External
Memory

Crossbar Crossbar Crossbar

Mon Mon Mon...

m Monitors

Mon Mon Mon... Mon Mon Mon...

... ...

AES
Centralized

Monitor
Memory

Control
Processor

...

External
Interface

Control
Signals

Network
Interface

Tilman Wolf 33

Cluster Design
§ Simple implementation of clustered monitor

• Dynamic configuration through programming of demultiplexers
NP Core

32

Hash

Monitor
Select

3

4
Hash_1

R/R from
Monitor_1 to 6

Reset/Recover
NP Core

Hash

Hash_2

NP Core

Hash

Hash_4

Monitor_1

Hash 4

From
Hash_1 to 4

Reset/
Recover

1

Monitor_2 Monitor_3 Monitor_4 Monitor_5 Monitor_6

Proc
Select

2

NP Core

Hash

Hash_3

1

4

Tilman Wolf 34

Dual-Ported Monitor Implementation
§ Memory of monitor can be shared between two monitors

• Effective use of dual-ported memory
• Two monitoring graphs can be used in parallel

One-hot
Encoding

Hash
Comparison

4-bit Hash
Function

16

4

32

1

Processor
Instruction

Reset/Recover

Next
State
Select

4

Graph
Select

K-1

K

1

Next State

Valid Hashes

One-hot
Encoding

Hash
Comparison

4-bit Hash
Function

4

16

Next
State
Select

Graph
Select

1

K

4

14

Next State
Valid Hashes 14

1

Reset/Recover

Processor
Instruction

32

Monitor 1

Monitor 2

Monitoring Graph 2

Monitoring Graph 1

Tilman Wolf 35

Runtime Monitor Allocation
§ How many monitors per cluster?

• Number of monitors m, number of processor cores n
§ Analytical model

• Blocking occurs
when no monitor
is available for
given packet
processing

• Two programs
with equal
traffic and workload
assumed

§ Overprovisioning
of 1.5 is sufficient

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2

th
ro

ug
hp

ut

monitor overprovisioning (m/n)

n=2
n=4
n=8

n=16
n=32

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2

th
ro

ug
hp

ut

monitor overprovisioning (m/n)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2

th
ro

ug
hp

ut

monitor overprovisioning (m/n)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2

th
ro

ug
hp

ut

monitor overprovisioning (m/n)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2

th
ro

ug
hp

ut

monitor overprovisioning (m/n)

Tilman Wolf 36

Prototype Implementation on FPGA
§ Multi-core system (4 cores, 6 monitors)

• Monitor logic very simple
• Interconnect uses very little resources
• Monitors require about 1/3 of memory of processors
• Monitors require about 1/8 of power of processors

Tilman Wolf 37

Runtime Operation
§ Adaptation based on threshold in queue for application
§ Simulation results

• Monitor allocation adapts to dynamics in traffic

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70"

In
co
m
in
g(
pa

ck
et
(ra

/o
(

Time(t((kilocycles)(

Packet"type"1"

Packet"type"2"

Packet"type"3"

Total"

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

11"

12"

13"

14"

15"

16"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70"
N
um

be
r'o

f'p
ro
ce
ss
or
s'a

ss
ig
ne

d'

Time't'(kilocycles)'

Packet"type"1"

Packet"type"2"

Packet"type"3"

Total"

Tilman Wolf 38

Runtime Operation
§ Simulation results

• Throughput variation due to adaptation
• Small inefficiencies during workload change

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

11"

12"

13"

14"

15"

16"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70"

N
um

be
r'o

f'p
ro
ce
ss
or
s'a

ss
ig
ne

d'

Time't'(kilocycles)'

Packet"type"1"

Packet"type"2"

Packet"type"3"

Total"

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70"

Th
ro
ug
hp

ut
)(p

ac
ke
ts
/k
ilo

cy
cl
es
))

Time)t)(kilocycles))

Tilman Wolf 39

Graph Loading Times
§ Time to load graph depends on application size
§ Results from NpBench

Tilman Wolf 40

Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 41

Extension: Infrastructure Diversity
§ System-level challenges

• Dynamics: runtime verification of monitoring graphs
− Network traffic and functionality change at runtime
− Multiple processor cores and

their monitors need to be
reprogrammed based on the
traffic

• Homogeneity: parameterizable
hashing for heterogeneity
− Practical networks use large

numbers of identical router
devices

− A successful attack on one
device can lead to
Internet-scale failures

Tilman Wolf 42

Security Loading of Monitoring Graph
§ Three entities:

• Router
manufacturer

• Network operator
• Router/network

processor
§ Signatures on graph

establish chain of
trust
• Network processor

verifies authenticity
• Network operator

can install new
graph

Tilman Wolf 43

Prototype Implementation on FPGA
§ Prototype system

• Altera Stratix IV
FPGA on a DE4
board

• Nios II connects
to a FTP server
through OpenSSL

• Parameterizable
hash function in
hardware monitor

Tilman Wolf 44

Security Operations Evaluation on Nios II
§ Secure download, decryption, and verification times

• IPv4 with congestion management application
• Verification takes several sections

Tilman Wolf 45

Parameterizable Hash Function
§ Merkle tree for hash

function
• Can be parameterized
• High performance

implementation in
hardware

• Low resource overhead
§ Each network processor

can use a different
parameter value
• Resulting monitoring

graph has different
hash values

Tilman Wolf 46

Hash Function Evaluation
§ Resource cost for hash function

• Compared to non-parameterizable hash function

§ Distribution of hash values in Merkle tree
• Random distribution of Hamming distance for almost all inputs
• Hash function requires zero Hamming distance for same inputs

Tilman Wolf 47

Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 48

Extension: Operating System in ES
§ Coordination between embedded OS and monitor

• Multiple active
processes in OS,
multiple active
monitoring graphs

• Monitor switches
monitoring graphs
in sync with OS
processes

• Requires minor
extension to OS

§ Prototype:
• NIOS II processor
• μC/OS-II operating

system

processor
core

instruction memory

data memory

I/O interface

comparison
logic

mon. memory

em
be

dd
ed

 p
ro

ce
ss

or

ha
rd

w
ar

e
m

on
ito

r

hash of
processing
instruction

task reset

of
fli

ne

an
al

ys
is

ru
nt

im
e

op
er

at
io

n

processing code
binary

monitoring
graph

... ...

processing code mon. graph

task context

OS or active task

context info

active graph

Tilman Wolf 49

Processor-to-Monitor Interface
§ OS on processor needs to coordinate with monitors

• Process creation (ensure monitoring graph is ready)
• Context switch between processes (switch monitoring graph)
• Process deletion (remove monitoring state)
• Reset signal from monitor

§ A set of five registers to communicate with the processor

Tilman Wolf 50

Operating System Support
§ Hardware monitoring logic tracks OS operations

32

31 10x0000h

14 20x1200h

x 0xxxx

x 0xxxx

GID
of Active
Processes

Base Addr

4 14

21 14

11 31

x xxxx

GIDPID Valid

1

1

1

0

4 0x0002h

21 0x0004h

11 0x0000h

x xxxx

PID Address Pointer Valid

1

1

1

0

Address
Pointer +

override

0

1

Frame
Address

Hash
Comparison

CPU
Instruction

Valid HashNext State

...

...

...

Group1 Addr

Group3 Addr

Group1 Addr

Group3 Addr

0x1200h + 0x0000h:

0x1200h + 0x0008h:

0x0008h:

0x0000h: Group1 Addr

Group3 Addr

Group1 Addr

Group3 Addr

Valid HashNext State

...

...

...

Slot 4 Region

Slots 2 and 3
Regions

Slot 1 Region

Group 1

Group 2

Group 3

Group 4

0x0008h

0xffffh

0x000eh

0x000ah

...

read data

Base
Addresses

Register File

Graph Memory

write data

14

16

16 4

Sequencing
logic

4

Position of
matching

hash in the
hash vector

14
Read

Address

14

Control FSM

One‐hot
encoding

Hash
calculation

Recovery
signal

PID

GID

Operation

Done

From the
CPU

Pipeline

Processor
interface

CPU
Interrupt
controller

load

Controller

DMA

14 32

Write data
Write

address
Write
enable

Graph pool

PID addresses

PID to GID binding GID to frame binding

Enable/Disable

Tilman Wolf 51

Operating System Support
§ Context switch interactions:

§ Attack detection:

Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected

Monitor readyPID change Context Switch CPU ready

GID change
PID change Task Create Monitor ready

Instruction hash matches graph memory Instruction hash doesn’t match graph memory

Attack detected

void process_input(char *stringpassed) {
char name[90];
strcpy(name,stringpassed);
printf("Processing string .. !\n");
return;

}

Tilman Wolf 52

Operating System Support
§ Implementation cost on Stratix IV FPGA

§ Hardware monitoring can be used for embedded systems
• Embedded systems are similarly performance constrained

Tilman Wolf 53

Outline
§ Introduction
§ Vulnerabilities

• Example attack on network processor
§ Defense mechanism

• Hardware monitor
§ Extensions

• Multicore hardware monitor and dynamic workloads
• Secure loading and avoiding homogeneity
• Operating system support

§ Conclusions

Tilman Wolf 54

Conclusions
§ Current and future Internet needs to meet new demands

• Flexibility is key to avoid ossification
• Deployment of new edge services requires programmable data plane

§ Programmable routers provide packet processing platform
• Systems problem: security vulnerabilities
• Attacks can be launched within data plane (i.e., not control access)
• Monitor-based hardware defense mechanism is effective

§ Our work has addressed many practical concerns
• Workload dynamics and secure installation of monitoring graphs
• System heterogeneity
• Extension to general embedded systems with operating systems

§ Exciting research area that spans computer networking,
embedded systems, and system security

Tilman Wolf 55

Acknowledgements
§ Graduate students

• Kekai Hu (now: Intel)
• Arman Pouraghily
• Harikrishnan Chandrikakutty

(now: Juniper Networks)
• Danai Chasaki (now: Villanova Univ.)
• Shufu Mao (now: WorldQuant)
• Thiago Teixeira

§ Collaborators
• Russell Tessier

§ Sponsors
• National Science Foundation
• Altera Corporation

Tilman Wolf 56

Selected Publications
§ Data plane attack:

• Danai Chasaki and Tilman Wolf. Attacks and defenses in the data plane of networks.
IEEE Transactions on Dependable and Secure Computing, 9(6)798–810, November
2012.

• Danai Chasaki and Tilman Wolf. Design of a secure packet processor. In Proc. of
ACM/IEEE Symposium on Architectures for Networking and Communication Systems
(ANCS), San Diego, CA, October 2010.

§ Hardware monitors for network processors:
• Shufu Mao and Tilman Wolf. Hardware support for secure processing in embedded

systems. IEEE Transactions on Computers, 59(6):847–854, June 2010.
• Harikrishnan Kumarapillai Chandrikakutty, Deepak Unnikrishnan, Russell Tessier, and

Tilman Wolf. High-performance hardware monitors to protect network processors from
data plane attacks. In Proc. of 50th Design Automation Conference (DAC), Austin, TX,
June 2013.

• Kekai Hu, Harikrishnan Chandrikakutty, Russell Tessier, and Tilman Wolf. Scalable
Hardware Monitors to Protect Network Processors from Data Plane Attacks. In Proc. of
First IEEE Conference on Communications and Network Security (CNS), Washington,
DC, October 2013. (Best Paper Award)

• Kekai Hu, Tilman Wolf , Thiago Teixeira, and Russell Tessier. System-level security for
network processors with hardware monitors. In Proc. of 51st Design Automation
Conference (DAC), San Francisco, CA, June 2014.

§ Hardware monitors for embedded systems:
• Tedy Thomas, Arman Pouraghily, Kekai Hu, Russell Tessier, and Tilman Wolf. Multi-task

support for security-enabled embedded processors. In Proc. of 26th IEEE International
Conference on Application-specific Systems, Architectures and Processors (ASAP),
pages 136–143, Toronto, ON, July 2015.

Tilman Wolf 57

Tilman Wolf
wolf@umass.edu

http://www.ecs.umass.edu/ece/wolf/

