
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

Review Session

Wrap Up

Slides are copied from Lecture 7b, ECE3411 – Fall 2015

by Marten van Dijk and Syed Kamran Haider.

Pulse Width Modulation using Timer 1

2

OCR1A = TOP

OCR1B

Non-Inverting Mode

ADC

3

Analog

Mux

ADMUX

Clocked

off Mux

S&H

DAC

Conversion Logic

ADC0

ADC1

ADC7

Bandgap

gnd

… +

--

Prescalar

Aref

Example code ADC, no interrupt

4

void main(void)

{

DDRC &= 0x00; // PC1 = ADC1 is set as input

uart_init();

stdout = stdin = stderr = &uart_str;

// ADLAR set to 1  left adjusted result in ADCH

// MUX3:0 set to 0001  input voltage at ADC1

ADMUX = (1<<MUX0) | (1<<ADLAR);

// ADEN set to 1  enables the ADC circuitry

// ADPS2:0 set to 111  prescalar set to 128 (104us per conversion)

ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

// Start A to D conversion

ADCSRA |= (1<<ADSC);

fprintf(stdout,"\n\rStarting ADC demo...\n\r");

Takes more than 1ms, hence conversion

will finish which takes 104us

Example code ADC, no interrupt

5

while (1)

{

// Read from ADCH to get the 8 MSBs of the 10 bit conversion

Ain = ADCH;

// Typecast the volatile integer into floating type data, divide by maximum 8-bit value, and

// multiply by 5V for normalization

Voltage = (float)Ain/256.00 * 5.00;

//ADSC is cleared to 0 when a conversion completes. Set ADSC to 1 to begin a conversion.

ADCSRA |= (1<<ADSC);

// Write Voltage to string format and print (3 char string + “.” + 2 decimal places)

dtostrf(Voltage, 3, 2, VoltageBuffer);

fprintf(stdout,"%s\n\r",VoltageBuffer);

}

return 0;

}

Takes more than 1ms, hence conversion

will finish which takes 104us

ADC Noise Reduction

6

Watchdog Timer

7

#include <avr/wdt.h>

#include <avr/eeprom.h>

#define eeprom_true 0 //Suppose you want to store a flag at position 0

#define eeprom_data 1 //Suppose you want to store data at position 1

ISR (WDT_vect)

{

eeprom_write_dword((uint32_t*)eeprom_data,mode); //Write our current mode to EEPROM

eeprom_write_byte((uint8_t*)eeprom_true, 'T'); //Set write flag TRUE

}

void Initialize(void)

{

… all other initialization …

WDTCSR |= (1<<WDCE) | (1<<WDE); // Set Watchdog Condition Edit for four cycles

WDTCSR = (1<<WDIE) | (1<<WDE) | (1<<WDP3); // Set WDT Int and Reset; Prescalar at 4.0s.

}

Watchdog Timer

8

int main(void)

{

// WDOG Interrupt and Reset Disable, this only matters if reset occurs.

wdt_reset(); // Reset Watchdog timer

MCUSR &= ~(1<<WDRF); // Shut off Watchdog Reset Flag

WDTCSR |= (1<<WDCE) | (1<<WDE); // Set Watchdog Change Enable and WD Enable

WDTCSR = 0x00; // Disable Watchdog

Initialize();

// Read TimeOut from EEPROM

if (eeprom_read_byte((uint8_t*)eeprom_true) == 'T')

{

mode = eeprom_read_dword((uint32_t*)eeprom_data);

}

else

{

mode = 0; // Begin in normal mode

}

while (1) { ….. }

}

What is an Interrupt (recap)?

 A HW signal that initiates and event

 Upon receipt of an interrupt, the processor

 Completes the instruction being executed

 Saves the program counter (so as to return to the same execution point)

 Loads the program counter with the location of the interrupt handler code (ISR)

 Executes the interrupt handler (ISR)

 In practice, real time systems can handle several interrupts in priority fashion

 Interrupts can be enabled/disabled (By setting appropriate registers.)

 Highest priority interrupts serviced first (Which ones have the highest priority in Atmega328P?)

 Processor must check for interrupts very frequently: If any have arrived, it stops
immediately and runs the associated ISR

 Processor repeats: do one operation; check interrupts; if interrupts then suspend task and run ISR

9

ISR

 ISR is a program run in response to an interrupt

 Disables all interrupts

 Clears the interrupt flag that got it called

 Runs code to service the event

 Re-enables interrupts

 Exits so the processor can go back to its running task

 Should be as fast as possible, because nothing else can happen when an interrupt is
being serviced (when interrupts happen very frequently, tasks are being stalled and
progress very slowly, in the worst case one instruction per ISR)

 Interrupts can be

 Prioritized (service some interrupts before others)

 Disabed (processor doesn’t check or ignores all of them)

 Masked (processor only sees some interrupts)

10

Address Decoding of selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 000x xxxx xxxx xxxx

Latch0 0x2000 – 0x3FFF 001x xxxx xxxx xxxx

Latch1 0x4000 – 0x5FFF 010x xxxx xxxx xxxx

Latch2 0x6000 – 0x7FFF 011x xxxx xxxx xxxx

SRAM 0x8000 – 0xFFFF 1xxx xxxx xxxx xxxx

13

Internal

Unused

Latch0

Latch1

Latch2

SRAM

0x0000

0x04FF

0x2000

0x4000

0x6000

0x8000

0xFFFF𝐴15

𝐴13

𝐴14
𝐿𝑎𝑡𝑐ℎ0

𝐿𝑎𝑡𝑐ℎ1

𝐿𝑎𝑡𝑐ℎ2

𝑆𝑅𝐴𝑀

Bus Multiplexing & Address Decoding

Atmega

162

Latch0

LE

Latch1
LE

Latch2

LE
A

d
d

re
ss D

e
co

d
e
 Lo

g
ic

Address

Latch

Multiplexed Bus

SRAM

CS

Data Bus D[7:0]

Address Bus A[15:0]

A[7:0]

A[15:8]

A
[1

5
:1

3
]

AD[7:0]

A[15:8]

SPI: Serial Peripheral Interface

 Synchronous Data Transfer

 Master/Slave configuration

 4-Line Bus

 Full Duplex operation

15

SCLK

MOSI

SS

MISO

SCLK

MOSI

SS

MISO

SPI Master SPI Slave

SPI Master Example

16

void SPI_MasterInit(void)

{

/* Set SS, MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_SS) | (1<<DD_MOSI) | (1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/128 */

SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0);

}

uint8_t SPI_Master_Transceiver(uint8_t cData)

{

PORTB &= ~(1<<SPI_SS); // Pull Slave_Select low

SPDR = cData; // Start transmission

while(!(SPSR & (1<<SPIF))); // Wait for transmission complete

PORTB |= (1<<SPI_SS); // Pull Slave Select High

return SPDR; // Return received data

}

Note:

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.

DD_SS, DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins.

E.g. if MOSI is placed on pin PB3, replace DD_MOSI with DDB3 and DDR_SPI with DDRB.

SPI_SS should be replaced with actual bit position of SS pin in the port corresponding to SPI pins.

SPI Slave Example

17

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

uint8_t SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)));

/* Return Data Register */

return SPDR;

}

Note:

DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.

DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins.

E.g. if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

I2C: Inter Integrated Circuit bus
 Also known as Two Wire Interface (TWI)

 Allows up to 128 different devices to be connected using only two bi-directional bus lines,
one for clock (SCL) and one for data (SDA).

 All devices connected to the bus have individual addresses.

18

I2C Bus Arbitration
 Arbitration is carried out by all masters continuously monitoring the SDA line after outputting

data.

 If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration.

19

