ECE3411 — Fall 2016
Lecture 6b.

Real Time Operating Systems Cont'd
Bus and Communication Interfaces

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

Copied from Lecture 6a and Lecture 7b, ECE3411 — Fall 2015,
UBUNN by Marten van Dijk and Syed Kamran Haider

Realtime Kernel Design Strategies

" Polled Loop Systems
" Interrupt Driven Systems
= Multi-Tasking

= Foreground /Background Systems

Polled Loops

Simplest RT kernel

A single and repetitive instruction tests a flag that indicates whether or not an event
has occurred

Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel
No intertask communication or scheduling needed. Only single tasks exist

Excellent for handling high-speed data channels, especially when

Events occur at widely spaced intervals and

Processor is dedicated to handling the data channel

Examples interrupt-driven system

Interrupt Driven Software Examples

— IFF receiver sees a threat and interrupts an aircraft mission computer to
sound a cockpit alarm

— Inertial Navigation Unit data (A velocities in north/east/up coordinates) 1s
available at 32 Hz and interrupts the navigation software with new data
when it 1s ready

— Sonar contact data interrupts signal processing software when new data 1s
available

— Low altitude indicator triggers a fly-up comumand for a pilot

Multitasking

= Separate tasks that share one processor (or processors)

" Each task executes within its own context
* Owns processor
= Sees its own variables

* May be interrupted

= Tasks may interact to execute as a whole program

Example

Clock interupt

Navigation System Software
- Navigation Filter

e
-
&

Navigation Sensor Tasks

= Nawvigation Sensor Task retneves data from sensor ;' ’.s' r.*" Mailbox is a circular

» Each task can only “see” its data ¥ /! buffer with a read and
* Clock-dnven scheduler drives tasks at vanous frequencies to - IIIIII L / o write poiner

write sensor data to shared memory

= Navigation filter retrieves data at scheduled mtervals Post to maibes _..__._.

Tk @D

perry - 42501 Dtata Trnsfer 6

Context Switching

When the CPU switches from one task to running another, its is said to have switched
contexts

Save the minimum needed to restore the interrupted process
Contents of registers
Contents of the program counter
Contents of coprocessor registers (if applicable)
Memory page registers
Memory-mapped |/O

Special variables
During context switching, interrupts are often disabled

Real time systems require minimal times for context switches

Multitasking

* How do many tasks share the same CPU?
* Cyclic executive systems
* Round robin systems

* Pre-emptive priority systems

Cyclic Executive Systems

= Calls to statically ordered threads

Thread calls —

fimer tmer

" Pros

* Easy to implement (used extensively in complex safety critical systems)

= Cons
" Not efficient in overall usage of CPU processing

* Does not provide optimal response time

Round Rohin Systems

Several processes execute sequentially to completion
Often in conjunction with a cyclic executive
Each task is assigned a fixed time slice

Fixed rate clock initiates an interrupt at a rate corresponding to the time slice
= Task executes until it completes or its execution time expires

* Context saved if task does not complete

Just like our task-based programming without fixed times slices per task

Last

Arrival order

Pre-emptive Priority Systems

= Higher priority task can preempt a lower priority task if it interrupts the lower-
priority task

= Priorities assigned to each interrupt are based upon the urgency of the task
associated with the interrupt

= Priorities can be fixed or dynamic
* Round Robin Systems - Preemptive Scheduling of 3 Tasks

Example: Aircraft Navigation System
- High Priority: Task that checks accelerometer

Hizgh
data every 5ms
_ - Medium Priority: Task that collects gyro data
and compensates this data and the
Medrun accelerometer data every 40ms

Priority

- - - Low Priority: Display update, Built-in-Test (BIT)

Problems Multitasking

= High priority tasks hog resources and starve low priority tasks

* Low priority tasks share a resource with high priority tasks and block high priority
tasks

* How does a RTOS deal with some of these issues?
* Rate Monotonic Systems (higher execution frequency = higher priority)

“ Priority Inheritance

Priority Inversion / Priority Inheritance

Task A and Task C share a resource
Task A is high priority
Task C is low priority

Task A is blocked when Task C runs (effectively assigning A to C’s priority, hence
priority inversion)

Task A will be blocked for longer, if Task B of medium priority comes along to keep
Task C from finishing

A good RTOS would sense this condition and temporarily promote Task C to the high
priority of Task A (Priority Inheritance)

Priority Inversion / Priority Inheritance

Priority

Inversion - The problem A4 biockad because C has

high
priority

km.

Priority

the resources

A e _

[¢] [c | B BembecCwhin

aire beeps A waiting

Inheritance - A solution

high
priority

m.

pary - 42501
1=

i

"

time

Y Cinherit A5 prioviy so it can
- finizh and them A cam have the resource

Foreground/Background Systems

Most common hybrid solution for embedded applications

Involve interrupt driven (foreground) AND noninterruptive driven (background)
processes

All realtime solutions are just a special case of foreground/background systems
Polled loops = background only system

Interrupt-only systems = foreground only system

Anything not time-critical should be in background

Background is process with lowest priority

Foreground/Background Systems

= Gives hybrid systems = combining what we have seen so far
* Polled loops
* Interrupt-driven systems
* Multi-tasking
* Pre-emptive priority or
* Round robin or

* Cyclic executive

Back to the multitasking example

Clock intemupt

Navigation Svstem Software
- e Nawvigation Filter Tasks

L

Sensor Data Processing Tasks g

Navigation Sensor Tasks -

Sensor data

8

v

Fo———
1
.

* Polled loops: Nawvigation Sensor Tasks

* Interrupt Doven: Scheduler

. PIE‘—E]]Pﬁ"-"E‘ antj_: I'l'i“'_'ﬂlﬂl"_'ﬁ Access Tasks
*Navigation Filter Tasks

*Sensor Data Processing Tasks
*Memory Access Tasks

perTy - 42501

Multitasking Pros & Cons

" Pros
= Segments the problem into small, manageable piece (modular computer system design principle)
* Makes more modular software (can reuse portions more easily)

* Allows software designer to prioritize certain tasks over others

= Cons

* Depending upon implementation, timing may not be deterministic (jitter caused by variations in timing
of incoming data)

= Context switching adds overhead

Full Featured RTOS

= Expand foreground /background solution
* Add network interfaces

* Add device drivers
* Add complex debugging tools

" Most common choice for complex systems

* Many commercial operating systems available

Choosing a RTOS approach

How do you know which one is right for your application?

Look at what is driving your system (arrival pattern of data)
Irregular (known but varying sequence of intervals between events)
Bursty (arbitrary sequence with bound on number of events)
Bounded (minimum interarrival interval)
Bounded with average rate (unpredictable event times, but cluster around mean)

Unbounded (statistical prediction only)

What is the critical 1/O?

Are there absolute hard deadlines?

20

Choosing a RTOS approach

How do you know which one 1s nght for your application? Let’s look at some
real life choices.

— Reusable Launch Vehicle for satellites. Thrust Vector Control SW
requires new attitude data every 40 msec or rocket becomes unstable.

* We chose cyclic executive.

— Nawvigation and Confrol System for submarine. Interface to multiple
sensors at multiple data rates. Information from the Inertial Reference
Unit 1s most critical, but exact iming of input data 1s not essential.

* We chose preemptive priority scheme running on a commercial
RTOS. Important tasks given highest prioriiy.

A

Choosing a RTOS approach

How do you know which one 1s right for your application? Let’s look at some
real life choices.

— Avionics System requures new data from flight control surfaces,
navigation equupment, and radar system every 50 msec.

* Cyclic executive. Each task runs to completion. Tasks run in series.
Last tasks may not finish before 50msec interrupt occurs.

— Microcontroller running to switch radar antennae and check for incoming
signal If the signal 15 there, power up the signal processing chip.

* We chose polled loop.

72

Bus and Communication Interfaces

" Serial Local Buses

= SPI

* MicroWire
= 12C

= 1-Wire

23

Serial synchronous interfaces

" Local serial interconnection of microcontrollers and peripheral circuits /functions

= Required features:
* Low complexity
= Low to medium data rate

= Small physical footprint /few pins

= Short distances

= Low cost

" Most MCUs have built-in peripheral units for communicating with external circuits,
e.g. ATmegaAVR (SPl and TWI (12C))

= Great abundance of different types of peripheral circuits that implements
synchronous serial interfaces (Flash, EEPROM, AD, DA, RTC, Display drivers, sensors

etc.)

24

SPI: Serial Peripheral Interface

= Synchronous Data Transfer SPI Master SPI Slave
" Master/Slave configuration

SCLK » SCLK
= 4-line Bus MOSI » MOSI

MISO < MISO

= Full Duplex operation

SS I‘ » SS

Master SCLK

CLK
MOSI
r MISO

25

SPI Master with Multiple Slaves

Master SCLK

MOSI
MISO
1SS2
1SS

SCLK Slave 2

MOQOSI
MISO
ISS

Ve d

26

SPI Frame Transfer

Figure 18-3. SPI Transfer Format with CPHA =0

[SCK (CPOL = 0)
mode 0

SCK (CPOL = 1)
| mode 2

I I N I N I N
| MOSIMISO | | | | | | | |
" CHANGE 0 \ : >_<
MOSI PIN
CHANGE 0 _< 5 >_< 5
| MISO PIN i i
s

MSB first (DORD =0) MSB Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB
LSB first (DORD =1) LSB Bit 1 Bit 2 Bit 3 Bit4 Bit 5 Bit 6 MSB

o o
C
o
B

By
e
/

27

MicroWire (uWire)

= Essentially a subset of SPI

= SPI mode 0 = (CPOL, CPHA) = (0, 0)

= Often found in half duplex “three-wire mode”

* Common bi-directional serial data line = only three wires needed (SIO, SCLK, CS)

* Used in e.g. RTCs (real-time clocks) and serial EEPROMs

28

