
ECE3411 – Fall 2016

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Real Time Operating Systems Cont’d
Bus and Communication Interfaces

Lecture 6b.

Copied from Lecture 6a and Lecture 7b, ECE3411 – Fall 2015, 

by Marten van Dijk and Syed Kamran Haider



Realtime Kernel Design Strategies

 Polled Loop Systems

 Interrupt Driven Systems

 Multi-Tasking

 Foreground/Background Systems

2



Polled Loops

 Simplest RT kernel

 A single and repetitive instruction tests a flag that indicates whether or not an event 
has occurred

 Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel

 No intertask communication or scheduling needed. Only single tasks exist

 Excellent for handling high-speed data channels, especially when

 Events occur at widely spaced intervals and

 Processor is dedicated to handling the data channel

3



Examples interrupt-driven system

4



Multitasking

 Separate tasks that share one processor (or processors)

 Each task executes within its own context

 Owns processor

 Sees its own variables

 May be interrupted

 Tasks may interact to execute as a whole program

5



Example

6

Mailbox is a circular 

buffer with a read and 

a write pointer



Context Switching

 When the CPU switches from one task to running another, its is said to have switched 
contexts

 Save the minimum needed to restore the interrupted process

 Contents of registers

 Contents of the program counter

 Contents of coprocessor registers (if applicable)

 Memory page registers

 Memory-mapped I/O

 Special variables

 During context switching, interrupts are often disabled

 Real time systems require minimal times for context switches

7



Multitasking

 How do many tasks share the same CPU?

 Cyclic executive systems

 Round robin systems

 Pre-emptive priority systems

8



Cyclic Executive Systems

 Calls to statically ordered threads

 Pros

 Easy to implement (used extensively in complex safety critical systems)

 Cons

 Not efficient in overall usage of CPU processing

 Does not provide optimal response time

9



Round Robin Systems

 Several processes execute sequentially to completion

 Often in conjunction with a cyclic executive

 Each task is assigned a fixed time slice

 Fixed rate clock initiates an interrupt at a rate corresponding to the time slice

 Task executes until it completes or its execution time expires

 Context saved if task does not complete

 Just like our task-based programming without fixed times slices per task

10



Pre-emptive Priority Systems

 Higher priority task can preempt a lower priority task if it interrupts the lower-
priority task

 Priorities assigned to each interrupt are based upon the urgency of the task 
associated with the interrupt

 Priorities can be fixed or dynamic

11

Example: Aircraft Navigation System

- High Priority: Task that checks accelerometer 

data every 5ms

- Medium Priority: Task that collects gyro data 

and compensates this data and the 

accelerometer data every 40ms

- Low Priority: Display update, Built-in-Test (BIT)



Problems Multitasking

 High priority tasks hog resources and starve low priority tasks

 Low priority tasks share a resource with high priority tasks and block high priority 
tasks

 How does a RTOS deal with some of these issues?

 Rate Monotonic Systems (higher execution frequency = higher priority)

 Priority Inheritance

12



Priority Inversion / Priority Inheritance

 Task A and Task C share a resource

 Task A is high priority

 Task C is low priority

 Task A is blocked when Task C runs (effectively assigning A to C’s priority, hence 
priority inversion)

 Task A will be blocked for longer, if Task B of medium priority comes along to keep 
Task C from finishing

 A good RTOS would sense this condition and temporarily promote Task C to the high 
priority of Task A (Priority Inheritance)

13



Priority Inversion / Priority Inheritance

14



Foreground/Background Systems

 Most common hybrid solution for embedded applications

 Involve interrupt driven (foreground) AND noninterruptive driven (background) 
processes

 All realtime solutions are just a special case of foreground/background systems

 Polled loops = background only system

 Interrupt-only systems = foreground only system

 Anything not time-critical should be in background

 Background is process with lowest priority

15



Foreground/Background Systems

 Gives hybrid systems = combining what we have seen so far

 Polled loops

 Interrupt-driven systems

 Multi-tasking

 Pre-emptive priority or

 Round robin or

 Cyclic executive

16



Back to the multitasking example

17



Multitasking Pros & Cons

 Pros

 Segments the problem into small, manageable piece (modular computer system design principle)

 Makes more modular software (can reuse portions more easily)

 Allows software designer to prioritize certain tasks over others

 Cons

 Depending upon implementation, timing may not be deterministic (jitter caused by variations in timing 
of incoming data)

 Context switching adds overhead

18



Full Featured RTOS

 Expand foreground/background solution

 Add network interfaces

 Add device drivers

 Add complex debugging tools

 Most common choice for complex systems

 Many commercial operating systems available

19



Choosing a RTOS approach

 How do you know which one is right for your application?

 Look at what is driving your system (arrival pattern of data)

 Irregular (known but varying sequence of intervals between events)

 Bursty (arbitrary sequence with bound on number of events)

 Bounded (minimum interarrival interval)

 Bounded with average rate (unpredictable event times, but cluster around mean)

 Unbounded (statistical prediction only)

 What is the critical I/O?

 Are there absolute hard deadlines?

20



Choosing a RTOS approach

21



Choosing a RTOS approach

22



Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.

 Industrial Buses
 VMEbus

 CompactPCI

 PC/104

 …

 Serial Local Buses
 SPI

 MicroWire

 I2C

 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART

 RS-232C

 RS-422

 USB

23

 Networks (N to M)

 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication

 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee



Serial synchronous interfaces

 Local serial interconnection of microcontrollers and peripheral circuits/functions 

 Required features: 

 Low complexity 

 Low to medium data rate 

 Small physical footprint/few pins 

 Short distances 

 Low cost

 Most MCUs have built-in peripheral units for communicating with external circuits, 
e.g. ATmegaAVR (SPI and TWI (I2C)) 

 Great abundance of different types of peripheral circuits that implements 
synchronous serial interfaces (Flash, EEPROM, AD, DA, RTC, Display drivers, sensors 
etc.) 

24



SPI: Serial Peripheral Interface

 Synchronous Data Transfer

 Master/Slave configuration

 4-Line Bus

 Full Duplex operation

25

SCLK

MOSI

SS

MISO

SCLK

MOSI

SS

MISO

SPI Master SPI Slave



SPI Master with Multiple Slaves

26



SPI Frame Transfer

27



MicroWire (𝜇Wire)

 Essentially a subset of SPI 

 SPI mode 0  (CPOL, CPHA) = (0, 0) 

 Often found in half duplex “three-wire mode” 

 Common bi-directional serial data line  only three wires needed (SIO, SCLK, CS) 

 Used in e.g. RTCs (real-time clocks) and serial EEPROMs

28


