
ECE3411 – Fall 2016

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Real Time Operating Systems Cont’d
Bus and Communication Interfaces

Lecture 6b.

Copied from Lecture 6a and Lecture 7b, ECE3411 – Fall 2015, 

by Marten van Dijk and Syed Kamran Haider



Realtime Kernel Design Strategies

 Polled Loop Systems

 Interrupt Driven Systems

 Multi-Tasking

 Foreground/Background Systems

2



Polled Loops

 Simplest RT kernel

 A single and repetitive instruction tests a flag that indicates whether or not an event 
has occurred

 Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel

 No intertask communication or scheduling needed. Only single tasks exist

 Excellent for handling high-speed data channels, especially when

 Events occur at widely spaced intervals and

 Processor is dedicated to handling the data channel

3



Examples interrupt-driven system

4



Multitasking

 Separate tasks that share one processor (or processors)

 Each task executes within its own context

 Owns processor

 Sees its own variables

 May be interrupted

 Tasks may interact to execute as a whole program

5



Example

6

Mailbox is a circular 

buffer with a read and 

a write pointer



Context Switching

 When the CPU switches from one task to running another, its is said to have switched 
contexts

 Save the minimum needed to restore the interrupted process

 Contents of registers

 Contents of the program counter

 Contents of coprocessor registers (if applicable)

 Memory page registers

 Memory-mapped I/O

 Special variables

 During context switching, interrupts are often disabled

 Real time systems require minimal times for context switches

7



Multitasking

 How do many tasks share the same CPU?

 Cyclic executive systems

 Round robin systems

 Pre-emptive priority systems

8



Cyclic Executive Systems

 Calls to statically ordered threads

 Pros

 Easy to implement (used extensively in complex safety critical systems)

 Cons

 Not efficient in overall usage of CPU processing

 Does not provide optimal response time

9



Round Robin Systems

 Several processes execute sequentially to completion

 Often in conjunction with a cyclic executive

 Each task is assigned a fixed time slice

 Fixed rate clock initiates an interrupt at a rate corresponding to the time slice

 Task executes until it completes or its execution time expires

 Context saved if task does not complete

 Just like our task-based programming without fixed times slices per task

10



Pre-emptive Priority Systems

 Higher priority task can preempt a lower priority task if it interrupts the lower-
priority task

 Priorities assigned to each interrupt are based upon the urgency of the task 
associated with the interrupt

 Priorities can be fixed or dynamic

11

Example: Aircraft Navigation System

- High Priority: Task that checks accelerometer 

data every 5ms

- Medium Priority: Task that collects gyro data 

and compensates this data and the 

accelerometer data every 40ms

- Low Priority: Display update, Built-in-Test (BIT)



Problems Multitasking

 High priority tasks hog resources and starve low priority tasks

 Low priority tasks share a resource with high priority tasks and block high priority 
tasks

 How does a RTOS deal with some of these issues?

 Rate Monotonic Systems (higher execution frequency = higher priority)

 Priority Inheritance

12



Priority Inversion / Priority Inheritance

 Task A and Task C share a resource

 Task A is high priority

 Task C is low priority

 Task A is blocked when Task C runs (effectively assigning A to C’s priority, hence 
priority inversion)

 Task A will be blocked for longer, if Task B of medium priority comes along to keep 
Task C from finishing

 A good RTOS would sense this condition and temporarily promote Task C to the high 
priority of Task A (Priority Inheritance)

13



Priority Inversion / Priority Inheritance

14



Foreground/Background Systems

 Most common hybrid solution for embedded applications

 Involve interrupt driven (foreground) AND noninterruptive driven (background) 
processes

 All realtime solutions are just a special case of foreground/background systems

 Polled loops = background only system

 Interrupt-only systems = foreground only system

 Anything not time-critical should be in background

 Background is process with lowest priority

15



Foreground/Background Systems

 Gives hybrid systems = combining what we have seen so far

 Polled loops

 Interrupt-driven systems

 Multi-tasking

 Pre-emptive priority or

 Round robin or

 Cyclic executive

16



Back to the multitasking example

17



Multitasking Pros & Cons

 Pros

 Segments the problem into small, manageable piece (modular computer system design principle)

 Makes more modular software (can reuse portions more easily)

 Allows software designer to prioritize certain tasks over others

 Cons

 Depending upon implementation, timing may not be deterministic (jitter caused by variations in timing 
of incoming data)

 Context switching adds overhead

18



Full Featured RTOS

 Expand foreground/background solution

 Add network interfaces

 Add device drivers

 Add complex debugging tools

 Most common choice for complex systems

 Many commercial operating systems available

19



Choosing a RTOS approach

 How do you know which one is right for your application?

 Look at what is driving your system (arrival pattern of data)

 Irregular (known but varying sequence of intervals between events)

 Bursty (arbitrary sequence with bound on number of events)

 Bounded (minimum interarrival interval)

 Bounded with average rate (unpredictable event times, but cluster around mean)

 Unbounded (statistical prediction only)

 What is the critical I/O?

 Are there absolute hard deadlines?

20



Choosing a RTOS approach

21



Choosing a RTOS approach

22



Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.

 Industrial Buses
 VMEbus

 CompactPCI

 PC/104

 …

 Serial Local Buses
 SPI

 MicroWire

 I2C

 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART

 RS-232C

 RS-422

 USB

23

 Networks (N to M)

 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication

 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee



Serial synchronous interfaces

 Local serial interconnection of microcontrollers and peripheral circuits/functions 

 Required features: 

 Low complexity 

 Low to medium data rate 

 Small physical footprint/few pins 

 Short distances 

 Low cost

 Most MCUs have built-in peripheral units for communicating with external circuits, 
e.g. ATmegaAVR (SPI and TWI (I2C)) 

 Great abundance of different types of peripheral circuits that implements 
synchronous serial interfaces (Flash, EEPROM, AD, DA, RTC, Display drivers, sensors 
etc.) 

24



SPI: Serial Peripheral Interface

 Synchronous Data Transfer

 Master/Slave configuration

 4-Line Bus

 Full Duplex operation

25

SCLK

MOSI

SS

MISO

SCLK

MOSI

SS

MISO

SPI Master SPI Slave



SPI Master with Multiple Slaves

26



SPI Frame Transfer

27



MicroWire (𝜇Wire)

 Essentially a subset of SPI 

 SPI mode 0  (CPOL, CPHA) = (0, 0) 

 Often found in half duplex “three-wire mode” 

 Common bi-directional serial data line  only three wires needed (SIO, SCLK, CS) 

 Used in e.g. RTCs (real-time clocks) and serial EEPROMs

28


