
ECE3411 – Fall 2016

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {marten.van_dijk, syed.haider}@uconn.edu

ADC: Analog to Digital Conversion

Lecture 5a.

Copied from Lecture 5a, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Introduction

 Why do we need Analog-Digital Conversion?

 Real world is Analog

 Digital computers process Digital signals

 ADC/DAC serve as interface between Computers and
Real world!

 Analog Signals are “Continuous”

 A “Discrete” version of the analog signal is created by
“Sampling” the analog signal

 ADC then maps each sample onto a quantized range of
voltages which can be represented by binary values.

2

ADC Types: Flash ADC

 Parallel Design

 A resistor divider network generates discrete voltage levels

 Input voltage is compared against all the voltage levels at once

 Priority Encoder considers the first “HIGH” input from the top as
valid, and converts it to binary form.

 Advantage: Fast

 Conversion takes just one cycle

 Disadvantage: A lot of components needed.

 2𝑛 − 1 comparators needed for 𝑛 bit ADC

3

Picture Source: www.hardwaresecrets.com

ADC Types: Ramp ADC

 Sequential Design

 A Counter counts from 0⋯2𝑛

 A DAC generates discrete voltage levels corresponding to the
digital values 0⋯2𝑛 (i.e. a voltage Ramp)

 In each cycle, input voltage is compared against the current
voltage level generated by DAC

 The comparator generates a “HIGH” value as soon as the ramp
crosses the input value. The corresponding counter value
becomes the output.

 Advantage: Only a few components needed.

 Disadvantage: Very slow.

 2𝑛 − 1 cycles (in worst case) for 𝑛 bit ADC conversion

4

Picture Source: www.hardwaresecrets.com

ADC Types: Successive Approximation ADC

 Sequential Design

 Closest digital value is approximated by “Binary Search”

 First, the MSB of SAR is set to 1, and the comparator decides
whether the input voltage is higher or lower than DAC voltage.
The bit value is adjusted accordingly.

 The process is repeated for each bit from MSB down to LSB

 The final SAR value becomes the output.

 Most widely used ADC type.

 Advantages:

 Only a few components needed.

 Conversion takes just 𝑛 cycles.

5

Picture Source: www.hardwaresecrets.com

ATMega328P ADC Diagram

6

Analog

Mux

ADMUX

Clocked

off Mux

S&H

DAC

Conversion Logic

ADC0

ADC1

ADC7

Bandgap

gnd

… +

--

Prescalar

Aref

To sample, switch connects a capacitor to the output of a buffer amplifier,

which charges or discharges the capacitor. This makes voltage across the

capacitor proportional to the input voltage. To hold, the switch disconnects.

Voltage reference Vref:

- By default: Aref pin supplies Vref if a fixed voltage source

is connected to the Aref pin

- The internal 1.1V reference is generated from the internal

bandgap reference through an internal amplifier

- AVCC is connected to the ADC through a passive switch and

can be made Vref = Vcc +/- 0.3V

- To reduce noise for Vref equal to 1.1V or AVCC the Aref

pin can be externally decoupled by a capacitor to ground

Conversion logic implements a

successive approximation

algorithm (a binary search;

one bit per search):

- DAC takes as input the

output of the conversion

logic and converts it to an

analog voltage where Aref

sets the full range

- Analog comparator

decides whether the DAC

output or input voltage is

the largest

7

Pin Assignment

8

Normal Conversion

 Takes 13 cycles

9

Accuracy

 Capacitor in S&H leaks and can therefore not hold a value for too long

 There exists a minimum sample speed/frequency

 Conversion logic takes time, so we cannot sample too fast

 There exists a maximum sample speed/frequency

 The faster you sample, you get a smaller number of accurate output bits (since the binary search
cannot completely finish)

 Noise: MCU produces up to 150mV line noise, there are other sources such as
electrical field, etc.

 Use capacitances close to the CPU to eliminate most of the inductance

10

Prescalar

 E.g., a prescalar of 128 gives 16MHz/128 = 125000 (between 50 and 200 kHz)

 To complete the binary search takes 13 cycles = 13/125000 = 104 micro seconds

 Gives 10 bits uncalibrated accuracy at a linear scale to Vref

 CPU clock is at least twice as fast as the ADC’s acceptable frequency; therefore the smallest
prescalar must be >=2

11

ADMUX Register

12

ADMUX Register

13

0..7 indicate input pins ADC0 .. ADC7

ADCH/ADCL: ADC Data Registers

14

ADLAR = Analog Data Left Adjust Register

For 8-bit conversion, set

ADLAR to 1 and read ADCH

If ADLAR is set to 0,

- read ADCL for low order bits, and

- until ADCH is read the ADC is

locked out

ADCSRA: ADC Status Register A

 Bit 7: ADEN – analog converter enable bit; set this bit to 1 if you want to do a
conversion

 Bit 6 ADSC – AD start conversion; if it is set to 1, then a conversion is started for you
and it is auto set back to 0 when done

 You can poll this bit and as soon as it is 0, you know the conversion is done

 Or you can poll the interrupt flag (or use the corresponding ISR if enabled):

 Bit 4: ADIF – AD interrupt flag; will be set when a conversion is done and will
trigger an interrupt if ADIE is set

 Warning: do not mess with this flag, e.g., use ADCSRA |= (1<<ADSC);

15

ADCSRA: ADC Status Register A

 Bit 3: ADIE – AD interrupt enable; if turned on, write the ISR to handle what
happens when conversion finishes

 Bit 5: ADATE – allows one out of 8 selected events to trigger the ADC converter
when coupled with the ADCSRB register

 Bits 0,1,2: prescalar (see previous slide)

16

ADCSRB

17

Example code ADC, no interrupt

18

// Borrowed from Bruce Land - Cornell University

// Performs single, left adjusted conversions and prints to UART

#include <inttypes.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <stdio.h>

#include <stdlib.h>

#include <util/delay.h>

#include <math.h>

#include "uart.h"

volatile int Ain, AinLow;

volatile float Voltage;

char VoltageBuffer[6];

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

Example code ADC, no interrupt

19

void main(void)

{

DDRC &= 0x00; // PC1 = ADC1 is set as input

uart_init();

stdout = stdin = stderr = &uart_str;

// ADLAR set to 1 left adjusted result in ADCH

// MUX3:0 set to 0001 input voltage at ADC1

ADMUX = (1<<MUX0) | (1<<ADLAR);

// ADEN set to 1 enables the ADC circuitry

// ADPS2:0 set to 111 prescalar set to 128 (104us per conversion)

ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

// Start A to D conversion

ADCSRA |= (1<<ADSC);

fprintf(stdout,"\n\rStarting ADC demo...\n\r");

Takes more than 1ms, hence conversion

will finish which takes 104us

Example code ADC, no interrupt

20

while (1)

{

// Read from ADCH to get the 8 MSBs of the 10 bit conversion

Ain = ADCH;

// Typecast the volatile integer into floating type data, divide by maximum 8-bit value, and

// multiply by 5V for normalization

Voltage = (float)Ain/256.00 * 5.00;

//ADSC is cleared to 0 when a conversion completes. Set ADSC to 1 to begin a conversion.

ADCSRA |= (1<<ADSC);

// Write Voltage to string format and print (3 char string + “.” + 2 decimal places)

dtostrf(Voltage, 3, 2, VoltageBuffer);

fprintf(stdout,"%s\n\r",VoltageBuffer);

}

return 0;

}

Takes more than 1ms, hence conversion

will finish which takes 104us

Conversion needs to finish

 Conversion needs to finish before the next conversion is called

 Use a print statement

 Delay functionality (of at least 104us)

 while (!(ADCSRA & (1<<ADSC) == 0)) { }

 The most efficient solution

21

