Review Session

Marten van Dijk
Department of Electrical \& Computer Engineering University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lecture 4b, ECE3411-Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

- DDRx : Data-Direction Register for Port x
- Controls whether each pin is configured for input (0) or output (1).
" To enable a pin as output, a ' 1 ' is written to that bit in DDRx.
" By default, all pins are initialized as inputs (DDRx $=0 \times 00$).
- PORTx : Port x Data Register
- Sets an output pin to logic HIGH (1) or LOW (0).
" E.g. writing a ' 1 ' to a bit position in PORT register will produce logic HIGH at that pin \& vice versa.
- PINx : Port x Input Pins Address
- Used to read the logic values of each pin that's configured as input.
" E.g. a value ' 0 ' of a bit of PIN register indicates a low voltage at that pin \& vice versa.

Debouncing of Bouncing Signals

- A button push results in a bouncy transition
- Due to physical limitations of the contact surfaces
- Bouncing is often very fast \rightarrow orders of few $u s$ to $m s$
- Debouncing in software
- Key idea: Read \rightarrow Wait \rightarrow Verify
" Wait time needs to be carefully controlled
- E.g. wait time should be at least 300 us for this example.

Software Debouncing State Machine

LCD Data Write (4-bit Mode)

Blocking vs. Non Blocking LCD Write Timing

Blocking Writes:

Non-Blocking Writes:

Interrupts \& ISRs

A few questions:

- Who calls the ISR?
- Can you "pass" a variable to an ISR?
- What is the return value of an ISR?
- How does the AVR know where to find the code for the corresponding ISR?

Interrupts \& ISRs

- Who calls the ISR?
- The hardware!
"Can you "pass" a variable to an ISR?
- No! The variable must be globally defined.
- What is the return value of an ISR?
- Nothing! However, it can store some value in a global variable.
- How does the AVR know where to find the code for the corresponding ISR?
" Through the Interrupt Vector Table.

ATmega328P Interrupt Vector Table

- The AVR knows what type of interrupt has occurred.
- It jumps to the program address specified in Interrupt Vector Table.
- E.g. Address 0x0002 for INTO
- There it sees another Jump instruction which takes it to the ISR code.

VectorNo.	Program Address ${ }^{(2)}$	Source	Interrupt Definition
1	$0 \times 0000{ }^{(1)}$	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0×0002	INTO	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 Compare Match B
10	0×0012	TIMER2 OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1 COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1 COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1 OVF	Timer/Counter1 Overflow
15	0x001C	TIMER0 COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMERO COMPB	Timer/Counter0 Compare Match B
17	0x0020	TIMER0 OVF	Timer/Counter0 Overflow
18	0×0022	SPI, STC	SPI Serial Transfer Complete
19	0x0024	USART, RX	USART Rx Complete
20	0x0026	USART, UDRE	USART, Data Register Empty
21	0×0028	USART, TX	USART, Tx Complete
22	0x002A	ADC	ADC Conversion Complete

Execution of an ISR

Timer 0

Timer 0 Modes of Operation

- Normal Mode
- Timer counts up from 0
- Timer overflows at 0xFF (i.e. 255)
- Interrupt can be generated upon Overflow
- CTC Mode
- OCROA is loaded with some value between 0 to 255
- Timer counts up from 0
" A compare match (kind of an overflow) occurs when TCNTO = OCROA
- Interrupt can be generated upon Compare Match

Timer 0 Mode Selection

Table 14-8. Waveform Generation Mode Bit Description

Mode	WGM02	WGM01	WGM00	Timer/Counter Mode of Operation	TOP	Update of OCRx at	TOV Flag Set on
0	0	0	0	Normal			

Bit
$0 \times 24(0 \times 44)$
Read/Write
Initial Value

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COM0A1 | COM0A0 | COMOB1 | COM0B0 | - | - | WGM01 | WGM00 |
| R/W | R/W | R/W | R/W | R | R | R/W | R/VN |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Bit
0×25 (0×45)
Read/Write
Initial Value

7	6	5	4	3	2	1	0
FOC0A	FOCOB	-	-	WGM02	CS02	CS01	CS00
W	W	R	R	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0

TCCROB

Timer 0 Overflow Interrupt

Timer 0 Compare Match Interrupt

Timer 1 Modes of Operation

- Normal Mode
- Timer counts up from 0
- Timer overflows at 0xFFFF (i.e. 65535)
- Interrupt can be generated upon Overflow
- CTC Mode
- OCR IA is loaded with some value between 0 to 65535
- Timer counts up from 0
- A compare match (kind of an overflow) occurs when TCNT1 = OCR1A
" Interrupt can be generated upon Compare Match

Timer 1 Mode Selection

Table 15-4. Waveform Generation Mode Bit Description ${ }^{(1)}$

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	TOP	Update of OCR1x at	TOV1 Flag Set on
0	0	0	0	0	Normal	OxFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	BOTTOM
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	BOTTOM
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	BOTTOM
4	0	1	0	0	CTC	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	BOTTOM	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	BOTTOM	BOTTOM
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR1A	BOTTOM	BOTTOM
10	1	0	1	0	PWM, Phase Correct	ICR1	TOP	BOTTOM
11	1	0	1	1	PWM, Phase Correct	OCR1A	TOP	BOTTOM
12	1	1	0	0	CTC	ICR1	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICR1	BOTTOM	TOP
15	1	1	1	1	Fast PWM	OCR1A	BOTTOM	TOP

location of these bits are compatible with previous versions of the timer

Bit
(0x80) Read/Write Initial Value

Bit
(0x81) Read/Write Initial Value

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICNC1 | ICES1 | - | WGM13 | WGM12 | CS12 | CS11 | CS10 |
| R/W | R/W | R | PNN | DAN | R/W | R/W | R/W |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

TCCR1B

Timer I Input Capture Interrupt

External Interrupts

- External Interrupts INTO \& INTI

- Can detect any logic change in input pins PD2 and PD3 respectively
- Can also be configured to trigger by a falling or rising edge
- INTO has the highest priority among all interrupts, then INTI and so on...
- Pin Change Interrupts PCINT23.. 0
- The pin change interrupt PCIO will trigger if any enabled PCINT7.. 0 pin toggles
" The pin change interrupt PCI1 will trigger if any enabled PCINT 14.8 pin toggles
- The pin change interrupt PCl 2 will trigger if any enabled $\operatorname{PCINT} 23 . .16$ pin toggles

VectorNo.	Program Address $^{(2)}$	Source	Interrupt Definition
1	$0 \times 0000^{(1)}$	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0×0002	INT0	External Interrupt Request 0
3	0×0004	INT1	External Interrupt Request 1
4	0×0006	PCINT0	Pin Change Interrupt Request 0
5	0×0008	PCINT1	Pin Change Interrupt Request 1
6	0×000 A	PCINT2	Pin Change Interrupt Request 2

Configuring INTI

EICRA - External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control
Bit
(0x69)
Read/Write
Initial Value

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | ISC11 | ISC10 | ISC01 | ISC00 |
| R | R | R | R | R/W | R/W | R/W | R/W |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table 12-1. Interrupt 1 Sense Control

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

EIMSK - External Interrupt Mask Register
Bit
$0 \times 1 \mathrm{D}(0 \times 3 \mathrm{D})$
Read/Write
Initial Value

EIMSK

Configuring Pin Change Interrupts

PCICR - Pin Change Interrupt Control Register
Bit
(0x68)
Read/Write
Initial Value

PCMSKO - Pin Change Mask Register 0
Bit
(0x6B)
Read/Write
Initial Value

Corresponding Pins:
PBO, PB 1, PB2

PCMSK1 - Pin Change Mask Register 1
Bit
$(0 \times 6 \mathrm{C})$
Read/Write
Initial Value

7	6	5	4	3	2	1	0
-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8
R	R/W						
0	0	0	0	0	0	0	0

PCMSK1

PCMSK2 - Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	PCMSK2
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	
Read/Write	RNW	R/W							
Initial Value	0	0	0	0	0	0	0	0	

