ECE3411 – Fall 2016 Lecture 4b.

Review Session

Marten van Dijk

Department of Electrical & Computer Engineering University of Connecticut Email: marten.van_dijk@uconn.edu

Copied from Lecture 4b, ECE3411 – Fall 2015, by Marten van Dijk and Syed Kamran Haider

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

- **DDRx** : Data-Direction Register for Port x
 - Controls whether each pin is configured for input (0) or output (1).
 - To enable a pin as output, a '1' is written to that bit in DDRx.
 - By default, all pins are initialized as inputs (DDRx = 0×00).

PORTx : Port x Data Register

- Sets an output pin to logic HIGH (1) or LOW (0).
- E.g. writing a '1' to a bit position in PORT register will produce logic HIGH at that pin & vice versa.

PINx : Port x Input Pins Address

- Used to read the logic values of each pin that's configured as input.
- E.g. a value '0' of a bit of PIN register indicates a low voltage at that pin & vice versa.

Debouncing of Bouncing Signals

- A button push results in a bouncy transition
 - Due to physical limitations of the contact surfaces
 - Bouncing is often very fast \rightarrow orders of few us to ms
- Debouncing in software
 - Key idea: Read \rightarrow Wait \rightarrow Verify
 - Wait time needs to be carefully controlled
 - E.g. wait time should be at least 300*us* for this example.

Software Debouncing State Machine

LCD Data Write (4-bit Mode)

Blocking vs. Non Blocking LCD Write Timing

Blocking Writes:

Non-Blocking Writes:

Interrupts & ISRs

A few questions:

- Who calls the ISR?
- Can you "pass" a variable to an ISR?
- What is the return value of an ISR?
- How does the AVR know where to find the code for the corresponding ISR?

Interrupts & ISRs

- Who calls the ISR?
 - The hardware!
- Can you "pass" a variable to an ISR?
 - No! The variable must be globally defined.
- What is the return value of an ISR?
 - Nothing! However, it can store some value in a global variable.
- How does the AVR know where to find the code for the corresponding ISR?
 - Through the Interrupt Vector Table.

ATmega328P Interrupt Vector Table

- The AVR knows what type of interrupt has occurred.
- It jumps to the program address specified in Interrupt Vector Table.
 - E.g. Address 0x0002 for INT0
- There it sees another Jump instruction which takes it to the ISR code.

VectorNo.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2 COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2 COMPB	Timer/Counter2 Compare Match B
10	0x0012	TIMER2 OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1 CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1 COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1 COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1 OVF	Timer/Counter1 Overflow
15	0x001C	TIMER0 COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMER0 COMPB	Timer/Counter0 Compare Match B
17	0x0020	TIMER0 OVF	Timer/Counter0 Overflow
18	0x0022	SPI, STC	SPI Serial Transfer Complete
19	0x0024	USART, RX	USART Rx Complete
20	0x0026	USART, UDRE	USART, Data Register Empty
21	0x0028	USART, TX	USART, Tx Complete
22	0x002A	ADC	ADC Conversion Complete

Execution of an ISR

10

Timer 0

Timer 0 Modes of Operation

- Normal Mode
 - Timer counts up from 0
 - Timer overflows at 0xFF (i.e. 255)
 - Interrupt can be generated upon Overflow

CTC Mode

- OCR0A is loaded with some value between 0 to 255
- Timer counts up from 0
- A compare match (kind of an overflow) occurs when TCNT0 = OCR0A
- Interrupt can be generated upon Compare Match

Timer 0 Mode Selection

Mode	WGM02	WGM01	WGM00	Timer/Counter Mode of Operation	TOP	Update of OCRx at	TOV Flag Set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, Phase Correct	0xFF	TOP	BOTTOM
2	0	1	0	стс	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	BOTTOM	MAX
4	1	0	0	Reserved	-	_	-
5	1	0	1	PWM, Phase Correct	OCRA	TOP	BOTTOM
6	1	1	0	Reserved	-	-	_
7	1	1	1	Fast PWM	OCRA	BOTTOM	TOP

Table 14-8. Waveform Generation Mode Bit Description

Timer 0 Overflow Interrupt

Timer 0 Compare Match Interrupt

Timer 1 Modes of Operation

- Normal Mode
 - Timer counts up from 0
 - Timer overflows at 0xFFFF (i.e. 65535)
 - Interrupt can be generated upon Overflow

CTC Mode

- OCR1A is loaded with some value between 0 to 65535
- Timer counts up from 0
- A compare match (kind of an overflow) occurs when TCNT1 = OCR1A
- Interrupt can be generated upon Compare Match

Timer 1 Mode Selection

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	ТОР	Update of OCR1x at	TOV1 Flag Set on
0 <	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	BOTTOM
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	BOTTOM
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4 🤇	0	1	0	0	стс	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	BOTTOM	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	BOTTOM	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	BOTTOM	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR1A	BOTTOM	воттом
10	1	0	1	0	PWM, Phase Correct	ICR1	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCR1A	TOP	воттом
12	1	1	0	0	СТС	ICR1	Immediate	MAX
13	1	1	0	1	(Reserved)	-	-	-
14	1	1	1	0	Fast PWM	ICR1	BOTTOM	TOP
15	1	1	1	1	Fast PWM	OCR1A	BOTTOM	TOP

 Table 15-4.
 Waveform Generation Mode Bit Description⁽¹⁾

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and location of these bits are compatible with previous versions of the timer.

Timer 1 Input Capture Interrupt

External Interrupts

- External Interrupts INTO & INT1
 - Can detect any logic change in input pins PD2 and PD3 respectively
 - Can also be configured to trigger by a falling or rising edge
 - INTO has the highest priority among all interrupts, then INT1 and so on...
- Pin Change Interrupts PCINT23..0
 - The pin change interrupt PCIO will trigger if any enabled PCINT7..0 pin toggles
 - The pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles
 - The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

VectorNo.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2

Configuring INT1

EICRA – External Interrupt Control Register A

The External Interrupt Control Register A contains control bits for interrupt sense control.

Table 12-1. Interrupt 1 Sense Control

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

EIMSK – External Interrupt Mask Register

Configuring Pin Change Interrupts

PCICR – Pin Change Interrupt Control Register

Bit	7	6	5	4	3	2	1	0	
(0x68)	-	-	-	-	-	PCIE2	PCIE1	PCIE0	PCICR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

PCMSK0 – Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	Corresponding Pins:
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO PCMSK0	PBO, PB1, PB2
Read/Write	R/W	100,101,102							
Initial Value	0	0	0	0	0	0	0	0	

PCMSK1 – Pin Change Mask Register 1

Bit	7	6	5	4	3	2	1	0	_
(0x6C)	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	PCMSK1
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

PCMSK2 – Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	_
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCMSK2
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	