
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

Review Session

Lecture 4b.

Copied from Lecture 4b, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

 DDRx : Data-Direction Register for Port x

 Controls whether each pin is configured for input (0) or output (1).

 To enable a pin as output, a ‘1’ is written to that bit in DDRx.

 By default, all pins are initialized as inputs (DDRx = 0x00).

 PORTx : Port x Data Register

 Sets an output pin to logic HIGH (1) or LOW (0).

 E.g. writing a ‘1’ to a bit position in PORT register will produce logic HIGH at that pin & vice versa.

 PINx : Port x Input Pins Address

 Used to read the logic values of each pin that’s configured as input.

 E.g. a value ‘0’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

2

Debouncing of Bouncing Signals

 A button push results in a bouncy transition

 Due to physical limitations of the contact surfaces

 Bouncing is often very fast orders of few 𝑢𝑠 to 𝑚𝑠

 Debouncing in software

 Key idea: Read Wait Verify

 Wait time needs to be carefully controlled

 E.g. wait time should be at least 300𝑢𝑠 for this example.

3

Software Debouncing State Machine

4

No_Push
Maybe

Pushed

Maybe

NotPushed
Pushed

Pushed?

NotPushed?

NotPushed?

Pushed?

Pushed?

Pushed?

NotPushed?

NotPushed?

LCD Data Write (4-bit Mode)

5

void LcdDataWrite(uint8_t da)

{

// First send higher 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4); //give the higher half of cm to DATA_PORT

CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay

// Send lower 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f); //give the lower half of cm to DATA_PORT

CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay

}

1

2

3

4

Blocking vs. Non Blocking LCD Write Timing

Time (ms)

Fu
nc

ti
o
ns

0

main

lcd_write

_delay_ms

Time (ms)

Fu
nc

ti
o
ns

0

main

lcd_write

Wasted Cycles Wasted Cycles

Saved Cycles Saved Cycles

Blocking Writes:

Non-Blocking Writes:

Interrupts & ISRs

A few questions:

 Who calls the ISR?

 Can you “pass” a variable to an ISR?

 What is the return value of an ISR?

 How does the AVR know where to find the code for the corresponding ISR?

7

Interrupts & ISRs

 Who calls the ISR?

 The hardware!

 Can you “pass” a variable to an ISR?

 No! The variable must be globally defined.

 What is the return value of an ISR?

 Nothing! However, it can store some value in a global variable.

 How does the AVR know where to find the code for the corresponding ISR?

 Through the Interrupt Vector Table.

8

ATmega328P Interrupt Vector Table

 The AVR knows what type of
interrupt has occurred.

 It jumps to the program address
specified in Interrupt Vector Table.

 E.g. Address 0x0002 for INT0

 There it sees another Jump
instruction which takes it to the ISR
code.

9

Execution of an ISR

10

Program Memory

JMP 0xFC04

Instruction

First Instruction

0x0002

0x4508

0xFC04

First Instruction0xFF08

Interrupt vector table

main()

ISR (INT0_vec)

ISR (INT1_vec)

JMP 0xFC080x0004

INT0_vec :

INT1_vec :

……

…
…

…
…

1

2

3

Timer 0

11

Divider

/1

/8

/64

/256

/1024

Clocked: Scaled

internal clock or

external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked

off Mux

T0 pin

Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Timer 0 Modes of Operation

 Normal Mode

 Timer counts up from 0

 Timer overflows at 0xFF (i.e. 255)

 Interrupt can be generated upon Overflow

 CTC Mode

 OCR0A is loaded with some value between 0 to 255

 Timer counts up from 0

 A compare match (kind of an overflow) occurs when TCNT0 = OCR0A

 Interrupt can be generated upon Compare Match

12

Timer 0 Mode Selection

13

Timer 0 Overflow Interrupt

14

Divider

/1

/8

/64

/256

/1024

Select

Prescaler=1

Mux
Clocked

off Mux

01242532542550

TCNT0

Overflow Occurred ISR (TIMER0_OVF_vect)

{

// Some Code

}

Enables

Overflow

Interrupt

Timer 0 Compare Match Interrupt

15

Divider

/1

/8

/64

/256

/1024

Select

Prescaler=1

Mux
Clocked

off Mux

01242472482490

TCNT0

ISR (TIMER0_COMPA_vect)

{

// Some Code

}

Enables

Compare_Match_A

Interrupt

HW Comparator “=“

249

OCR0A

Timer 1 Modes of Operation

 Normal Mode

 Timer counts up from 0

 Timer overflows at 0xFFFF (i.e. 65535)

 Interrupt can be generated upon Overflow

 CTC Mode

 OCR1A is loaded with some value between 0 to 65535

 Timer counts up from 0

 A compare match (kind of an overflow) occurs when TCNT1 = OCR1A

 Interrupt can be generated upon Compare Match

16

Timer 1 Mode Selection

17

Timer 1 Input Capture Interrupt

18

Source 1

PB0

Source 2

PD6, PD7

ISR (TIMER1_CAPT_vect)

{

// Some Code

}

// Hardware performs this

ICR1 = TCNT1;

External Interrupts

 External Interrupts INT0 & INT1

 Can detect any logic change in input pins PD2 and PD3 respectively

 Can also be configured to trigger by a falling or rising edge

 INT0 has the highest priority among all interrupts, then INT1and so on…

 Pin Change Interrupts PCINT23..0

 The pin change interrupt PCI0 will trigger if any enabled PCINT7..0 pin toggles

 The pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles

 The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

19

Configuring INT1

20

Configuring Pin Change Interrupts

21

Corresponding Pins:

PB0, PB1, PB2

