
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

External Interrupts & Task Based Programming

Lecture 4a.

Based on the Atmega328P datasheet

Copied from Lecture 4a, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Example Problem 1

Consider the following code:

2

ISR(TIMER0_COMPA_vect)

{

if (flag_timer > 0) {flag_timer--;}

if (flag_timer == 0) {flag = ??; }

}

ISR(INT1_vect)

{

flag = ??;

flag_timer = ??;

}

Assume ISR(TIMER0_COMPA_vect) is triggered every 1ms. How should the question marks be filled in such that

• as soon as ISR(INT1_vect) is triggered, then flag is set to 1, and

• as soon as 1 second (with approx 1ms precision) has passed since the last time ISR(INT1_vect) was triggered, flag is set to 0.

Example Problem 1

Solution:

3

ISR(TIMER0_COMPA_vect)

{

if (flag_timer > 0) {flag_timer--;}

if (flag_timer == 0) {flag = 0; }

}

ISR(INT1_vect)

{

flag = 1;

flag_timer = 1000;

}

Assume ISR(TIMER0_COMPA_vect) is triggered every 1ms. How should the question marks be filled in such that

• as soon as ISR(INT1_vect) is triggered, then flag is set to 1, and

• as soon as 1 second (with approx 1ms precision) has passed since the last time ISR(INT1_vect) was triggered, flag is set to 0.

Example Problem 2
 One of your colleagues has already written the code for a task() (which takes about 100 micro

seconds) and asks you to write:

 The main code int main(void), which
 starts by setting registers, enabling interrupts, and executing task() for a first time, and

 concludes with a while loop which starts executing task() as soon as within a 1 second (with approx 1ms precision) time
frame each of the two pins 1 and 32 have signaled a falling edge after the last time task() finished executing

 Example: Consider the moment when task() finished executing at for example t=10.0001
seconds.

 Suppose that pin 1 signals falling edges at times t1=13, t1=13.7, and t1=14.3 seconds, pin 32
signals falling edges at times t0 = 12, t0= 13.5, and t_0=14.2 seconds. Assume for the purpose
of this example that no other falling edges happen.

 After time t=10.0001 when task() finished executing, the first moment each of the two pins signal
a falling edge within a 1 second time frame happens at t=13.5. So, task() should start executing
at time t=13.5.

 Suppose it finishes at t=13.5001. After time t=13.5001, the first moment each of the two pins all
signal a falling edge within a 1 second time frame happens at t=14.2. So, task() should again
start executing at time t=14.2.

4

Example Problem 2

 Besides the main code you are also required to write the appropriate ISRs and
declare variables. Assume the MCU runs at 20MHz. You can use the next two pages
to write your code.

 Hint: As in problem 1, program a flag0 and a flag1 for each of the two pins: As
soon as they sum up to 2, each pin triggered an ISR within the last 1 second
timeframe.

5

Example Problem 2

6

// Put the declaration of your global variables here:

#define t_flag 1000 // 1000ms = 1 second

volatile int flag0, flag1;

volatile int flag0_timer, flag1_timer;

ISR(TIMER0_COMPA_vect)

{

// Put your code here:

if (flag0_timer > 0) {flag0_timer--;}

if (flag0_timer == 0) {flag0 = 0; }

if (flag1_timer > 0) {flag1_timer--;}

if (flag1_timer == 0) {flag1 = 0; }

}

ISR(INT0_vect)

{

// Put the code of your second ISR here:

flag0 = 1;

flag0_timer = t_flag;

}

ISR(INT1_vect)

{

// Put the code of your third ISR here:

flag1 = 1;

flag1_timer = t_flag;

}

Example Problem 2

7

int main(void)

{

// Put your code of the main body (including initializations) here:

// An accurate 1ms timer (as explained in class):

TIMSK0 = 2; // enable interrupt

TCCR0A = 0x02; // return on clear-on-match

TCCR0B = 0x02; // prescalar @ 8

OCR0A = 249; // each time tick is 8(OCR0A+1)/20MHz = 1ms exactly

// An accurate enough timer is needed otherwise the flag_timers drift with respect

// to real time and we may not meet the specification of ~1ms precision.

// Initialize external interrupts INT0 (= pin 32) and INT1 (= pin 1) on falling edges

DDRD = 0x00; // D.2 = pin 32 and D.3 = pin 1 are inputs

EICRA = (1<<ISC01) | (1<<ISC11);

EIMSK = (1<<INT0) | (1<<INT1);

task_timer = t_task;

flag0 = 0;

flag1 = 0;

// Globally enable interrupts

sei();

Example Problem 2

8

// Execute task() before entering the while loop

// This allows us to formally meet the specifications of the program

task();

while (1)

{

if (flag0 + flag1 == 2) // See hint

{

task();

// All flags should be reset, since we just finished executing task()

flag0 = 0;

flag1 = 0;

}

}

return 0;

}

Example Problem 3

 One of your colleagues has already written the code for two tasks task1() and
task2() (each taking only about 100 micro seconds) and asks you to write:
The main code int main(void), which
 starts by setting registers and enabling interrupts, and

 concludes with a while loop which

 starts executing task1() every 1 millisecond (as accurate as possible), and

 starts executing task2() as soon as

1. a rising edge is received over pin 1 since the last time task2() finished executing and

2. at least 1 second has passed since the last time task2() finished executing.

Example: task2() finished executing at time t=0.

(a) If the next rising edge after t=0 is detected at e.g. time t=300 milliseconds, then the while loop waits another 700
milliseconds (such that 1 full second has passed) before it starts executing task2().

(b) If the next rising edge after t=0 is detected at e.g. time t=1100 milliseconds, then the while loop immediately starts
executing task2() (since 1 full second has already passed).

 Besides the main code you are also required to write the appropriate ISRs.
Assume the MCU runs at 20MHz.

9

Example Problem 3

10

// Put the declaration of your global variables here:

// define t1 as 1ms and t2 as 1000ms = 1 second

#define t1 1

#define t2 1000

volatile int task1_timer;

volatile int task2_timer;

volatile int flag;

ISR(TIMER0_COMPA_vect)

{

// Put the code of your first ISR here:

// Set up virtual timers

if (task1_timer > 0) {task1_timer--;}

if (task2_timer > 0) {task2_timer--;}

}

ISR(INT1_vect)

{

// Put the code of your second ISR here:

// Set flag

flag = 1;

}

Example Problem 3

11

int main(void)

{

// Put the code the main body here:

// An accurate 1ms timer (as explained in class):

TIMSK0 = 2; // enable interrupt

TCCR0A = 0x02; // return on clear-on-match

TCCR0B = 0x02; // prescalar @ 8

OCR0A = 249; // each time tick is 8(OCR0A+1)/20MHz = 1ms exactly

// Initialize external interrupt INT1 (= pin 1) on rising edge

DDRD = 0x00; // D.3 = pin 1 is an input

EICRA = (1<<ISC11) | (1<<ISC10);

EIMSK = (1<<INT1);

task1_timer = t1;

task2_timer = t2;

flag = 0;

// Globally enable interrupts

sei();

Example Problem 3

12

while (1)

{

if (task1_timer == 0)

{

task1_timer = t1; // Before calling task1(), otherwise task1() is called

// every 1.1 ms where the 100 micro second delay comes

// from the execution of task1()

task1();

}

if (task2_timer == 0) && (flag == 1)

{

task2();

flag = 0; // As soon as task2() is finished we want to be able

// to detect external interrupts

task2_timer == t2; // After calling task2() since we measure the time that

// passes since task2() has finished executing for the

// last time

}

}

return 0;

}

