
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

Timers 0, 1 & 2

Lecture 3b.

Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

Copied from Lecture 3b, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Timer 0 (Same as Timer 2)

2

Timer 0

3

Divider

/1

/8

/64

Etc.

Clocked: Scaled

internal clock or

external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked

off Mux

T0 pin

Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Putting It Together: Task Based Programming

4

….

int TaskTime = 500;

volatile int SWTaskTimer=TaskTime;

ISR(TIMER0_COMPA_vect)

{

if (SWTaskTimer>0) {SWTaskTimer--;}

}

// 1ms ISR for Timer 0 assuming F_CPU = 1MHz

void InitTimer0(void)

{

TCCR0A |= (1<<WGM01); //Clear on Compare A

OCR0A = 124; //Set number of ticks for Compare A

TIMSK0 =2; //Enable Timer 0 Compare A ISR

TCCR0B = 2; //Set Prescalar & Timer 0 starts

}

….

int main(void)

{

…

InitTimer0();

…

sei(); // Enable global interrupt

while(1)

{

if (SWTaskTimer == 0)

{

Task();

SWTaskTimer == TaskTime;

}

}

return 0;

}

Example Timer 0

 16MHz, 1ms ticks:

5

// 1ms ISR for Timer 0 assuming F_CPU = 16MHz

void InitTimer0(void)

{

TCCR0A |= (1<<WGM01); //turn on clear-on-match with OCR0A

OCR0A = 249; //Set the compare register to 250 ticks

TIMSK0 = (1<<OCIE0A); //Enable Timer 0 Compare A ISR

TCCR0B = 3; // Set Prescalar to divide by 64 & Timer 0 starts

}

….

Timer 2

6

Clocked

off Mux

Channel A

TCNT2

HW Comparator “=“

HW Comparator “=“

OCR2A

OCR2B

Channel B

Bus

8

8

8

OC2A = PB3

OC2B = PD3

Create an autonomous 200 cycle long square

wave at PB3:

• OCR2A = 99 sets a 100 cycle half period

• TCCR2B = 1 sets prescalar at 1, i.e.,

counting is done at full rate (F_CPU)

• TCCR2A= (1<<COM2A0) |

(1<<WGM21);

• See Timer 0 discussion: (1<<WGM2)

gives us a clear on match

• (1<<COM2A0) is new: it tells the

MCU to use channel A, i.e., it

connects the comparator to the

output pin OC2A=PB3

• DDRB = (1<<PINB3) sets PB3 as output

Example Timer 2

 200 cycle square waveform at PB3 (a first example of PWM):

7

void InitTimer2(void)

{

TCCR2A |= (1<<COM2A0) | (1<<WGM21); //turn on clear-on-match with OCR0A

// transmit comparator result to pin OC2A

OCR2A = 99; //Set the compare register to 100 ticks, i.e., one half period

TCCR2B = 1; // Set Prescalar to divide by 1, i.e., full speed

DDRB = (1<<PINB3); //Set OC2A = PB3 to output

}

….

Timer 1

8

PB1

PB2

PB0

(See pin assignments)

Timer 1

9

Clocked

off Mux

Channel A

TCNT1

HW Comparator “=“

HW Comparator “=“

OCR1A

OCR1B

Channel B

Bus

8

8

8

16

16

16

16

OC1A = PB1

OC1B = PB2

TCNT1 is 16 bits, a high and low

register:

• Need 2 bus cycles to read TCNT1:

it reads the lower byte and also

copies the higher byte to a special

location

• Stores the 8-bit high till you read it,

if you do not read it, you will never

read a value again

• If you read the high value first and

then the low value, timer 1 is frozen

• Use the 16 bit reads built into C

Not drawn: TCNT1 can be captured by

register ICR1 clocked of a mux …. see

next slide

TCNT1 Can Be Captured by ICR1

10
PB0

Edge change indicates when to capture.

• Caused by an edge change on PB0 (if set to input)

• Or by an edge change on Analog Comparator

Select bit ACIC in ACSR register indicates which of the

two is chosen

Register Description Timer 1
 Control register TCCR1A:

 Positions 7&6  COM1A (COM1A0 and COM1A1)

 Positions 5&4  COM1B (COM1B0 and COM1B1)

 Positions 1&0  WGM11 and WGM10 (waveform)

 Control register TCCR1B:
 Positions 3&4  WGM13 and WGM12 (waveform continued)

 Positions 0,1,2  Prescalar as before

 Position ICES1=6  Sets input capture edge select:

 1 = rising

 0 = falling

 Position ICNC1=7  Sets input capture noise canceler

 This requires 2 measurements in a row making sure one transmission actually occurred

 Control register TIMSK1:
 Positions 0,1,2  As before

 TOIE1 (timer overflow interrupt enable)

 OCIE1A and OCIE1B (on compare and match interrupt enable)

 Positions ICIE1=5  Interrupt capture interrupt enable

11

Analog Comparator Output

12

Select bandgap

reference

Let’s connect the

Timer 2 square

waveform (PB3)

PD7

PD7 vs Bandgap
Want to capture at rising

edge ICES1set to 1;

Since PB3 generates a

waveform on a cycle by

cycle basis, prescalar set

to 1 for full speed

PIN Assignment

13

Register Description Timer 1

 Let’s program a capture interrupt using the analog comparator

 Need to set register ACSR:

 Positions 0&1  Interrupt on toggle rise or fall

 Positions 2&3  Capture and Comparator interrupt enable

 We want to enable the capture interrupt (not the comparator interrupt)

 Position 4  Comparator interrupt flag:

 Is set when this interrupt happens, and

 clears when a corresponding ISR executes the final (atomic) RETI instruction

 Position 5  Records ACO raw comparator output:

 in real time nanosec by nanosec

 digital output of the analog comparator (signal ACO)

 Position 6  Connects positive input to a bandgap reference (a temperature independent voltage
reference circuit)

 If 1, then (see description datasheet) fixed bandgap reference is used as input to the analog comparator (usually do not want this)

 Position 7  When switched to 1 the analog comparator is turned off 14

Example Timer 1

15

void InitTimer1(void)

{

//Set up timer1 for full speed and capture an edge on analog comparator pin D.7

//Set capture to positive edge; Full counting rate (prescalar set to 1)

TCCR1B = (1<<ICES1) + 1;

// Turn on timer1 interrupt-on-capture

TIMSK1 = (1<<ICIE1) ;

// Set analog comp to connect to timer capture input and turn on the band gap reference on the positive input

ACSR = (1<<ACBG) | (1<<ACIC) ;

// Comparator negative input is AIN1= D.7

DDRD = 0 ;

}

….

Full Picture Timers
 3 initialization codes for Timer 0, 1, 2; Timer 0 implements a 1ms software counter

 Timer 2 (at full speed) generates a square waveform, period 200 cycles

 Waveform drives ACO

 Rising edges ACO causes capture interrupts for Timer 1(at full speed)

 Both timers run at full speed and should be synchronized:

16

ISR (TIMER1_CAPT_vect)

{

// read timer1 input capture register

T1capture = ICR1 ;

// compute time between captures

period = T1capture - lastT1capture;

lastT1capture = T1capture ;

}

ISR (TIMER0_COMPA_vect)

{

//Decrement the time if not already zero

if (time1>0) --time1;

}

Full Picture Timers

17

int main(void)

{

initialize();

while(1)

{

// task1 prints the period

if (time1==0){time1=t1; task1();}

// poll for ACO 0->1 transition (ACSR.5)

// as fast as possible and record Timer1

ACObit = ACSR & (1<<ACO) ;

if ((ACObit!=0) && (lastACObit==0))

{

T1poll = TCNT1 ;

periodPoll = T1poll - lastT1poll;

lastT1poll = T1poll ;

}

lastACObit = ACObit ;

}

}

Print the polled period from ACSR.5 which records AC0

Print the polled captured period from ICR1 (done in capture ISR)

What is the difference?

Measurement from polled period is off by 10%  Next lab

Connect PD3 and PB7 !

Labs 3b & 3c

 We will remove delay_ms() from the LCD goto and write data commands

 The assumption is that the task that calls these commands

 is issued every x ms with x much larger than

 the combined waiting time over all delay_ms in the LCD commands within the task.

 This implies that this task will not be called while LCD commands are being
executed, hence, no multi-threading and our simple solution (without priority queues
etc.) should work

 By making the LCD commands non-blocking, other tasks in the main while loop
continue without interruption! In a future lab we plan to demonstrate this.

18

