ECE3411 — Fall 2016
Lecture 3b.

Timers 0, 1 & 2

UCONN

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lecture 3b, ECE3411 — Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Based on the Atmega328P datasheet and material
from Bruce Land’s video lectures at Cornel

Timer 0 (Same as Timer 2)

Figure 14-1. 8-bit Timer/Counter Block Diagram

DATA BUS

Tn

uﬁ

Count TOVn
Clear c | Loai © (Int.Req.)
ontrol Logic
Direction g > clk, Clock Select
Edge _
A A Detector [
TOP | BOTTOM
Yvy 4 . (From Prescaler)
Timer/Counter A A
TCNTn |
L = | [=0 |

f

f

OCnA

f) * ocnA
A ’_’(lm_Req_)
]
é] | Waveform
i Generation
OCRnA poece= :
Fixed
ocnB
TOP
v Value (IntReq.)
[= | > Conersto
i "1 Generation
OCRnB |
| TCCRnA | | TCCRnB |

OCnB

Timer 0

TCCROB[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

S

Divider

/1

/8

/64 _j Mux

Etc. >

7y

Clocked: Scaled TO pin
internal clock or ~ Port pin PD4

external clock

Clocked
off Mux

1

Bus
> TCNTO < 8 I|
HW Comparator “=*
1 Channel A
OCROA < 8 >
A 4
HW Comparator “=*
Channel B

OCROB -

(00}

Putting It Together: Task Based Programming

int main(void)
int TaskTime = 500; {
volatile int SWTaskTimer=TaskTime;
InitTimerO();
ISR(TIMERO_COMPA _vect) cee
{ sei(); // Enable global interrupt
if (SWTaskTimer>0) {SWTaskTimer--;}
} while(1)
{
// 1ms ISR for Timer O assuming F_CPU = 1MHz if (SWTaskTimer == 0)
void InitTimerO(void) {
{ Task();
TCCROA | = (1 <<WGMO1); //Clear on Compare A SWTaskTimer == TaskTime;
OCROA = 124; //Set number of ticks for Compare A }
TIMSKO =2; //Enable Timer O Compare A ISR }
TCCROB = 2; //Set Prescalar & Timer O starts
} return 0;
}

Example Timer 0

= 16MHz, Tms ticks:

// 1ms ISR for Timer O assuming F_CPU = 16MHz
void InitTimerO(void)
{
TCCROA | = (1<<WGMO1); //turn on clear-on-match with OCROA
OCROA = 249; //Set the compare register to 250 ticks
TIMSKO = (1<<OCIEQOA); //Enable Timer O Compare A ISR
TCCROB = 3; // Set Prescalar to divide by 64 & Timer O starts

}

Timer 2

Create an autonomous 200 cycle long square

—» OC2A = PB3

wave at PB3: Bus
* OCR2A = 99 sets a 100 cycle half period
* TCCR2B = 1 sets prescalar at 1, i.e.,
counting is done at full rate (F_CPU) > TCNT2 < 8 g
« TCCR2A= (1<<COM2AO0) | Clocked |
(1<<WGM21); off Mux .
* See Timer O discussion: (1<<WGM2) HW Comparator *= Channel A
gives us a clear on match 1
* (1<<COM2AOQ) is new: it tells the OCR2A — 8 —_—
MCU to use channel A, i.e., it
connects the comparator to the ¥
output pin OC2A=PB3 HW Comparator “=" Channel B
* DDRB = (1<<PINB3) sets PB3 as output t
Table17-2. Compare Output M0£-ie,. non-PWM Mode OCR2B — 8 o
COM2A1 COM2A0 Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OC2A on Compare Match

1 n Claar NC24 An Camnara Materh

» OC2B = PD3

Example Timer 2

= 200 cycle square waveform at PB3 (a first example of PWM):

void InitTimer2(void)

{
TCCR2A | = (1 <<COM2A0) | (1<<WGM21); //turn on clear-on-match with OCROA
// transmit comparator result to pin OC2A
OCR2A = 99; //Set the compare register to 100 ticks, i.e., one half period
TCCR2B = 1; // Set Prescalar to divide by 1, i.e., full speed
DDRB = (1<<PINB3); //Set OC2A = PB3 to output

}

Timer |

Figure 15-1. 16-bit Timer/Counter Block Diagram!")

Count . TOVn
Clear © {IntReq.)
Control Logic
Direction ¢ clk, Clock Select
Ll
Edge .
A A Detector [Tn

yvy AN { From Prescaler)

‘ Timer/Counter 4 A
TCNTn
""* | | =1 =
* A OCnA
M ’—’[InL.Req.}
] |
— [] | Waveform -
| = 1] | Generation > OCnA PB]
OCRnA % 2
i 1
H OCnB
! (Int.Req.)
0 E | vaes — (See pin assignments)
a — : | Waveform »|0cnB PB2 p g
< . Generation
E 4 '
s :
OCRnB (From Anal
= = (:omprgrn;torn o E’Em)
i ICFn {Int.Req.)
*_ .
' Edge ___ Noise
“'.'l IC:?n H Detector | Canceler
icen PBO
| TCCRnA [| TCCRnB |
'*1 ¢ t _
Note: 1. Referto Figure 1-1 on page 2, Table 13-3 on page 82 and Table 13-9 on page 88 for 8

Timer/Counter1 pin placement and description.

Timer |

TCNT1 is 16 bits, a high and low

register:

* Need 2 bus cycles to read TCNT1:
it reads the lower byte and also
copies the higher byte to a special
location

* Stores the 8-bit high till you read it,
if you do not read it, you will never
read a value again

* If you read the high value first and
then the low value, timer 1 is frozen

* Use the 16 bit reads built into C

Not drawn: TCNT1 can be captured by
register ICR1 clocked of a mux see
next slide

=» OCTA = PB]

> TCNTI1 < 8
Clocked
1
off Mux l 6
HW Comparator “=*
]6H 116 Channel A
OCRTA N 8
4
HW Comparator “=*
Channel B
161
OCR1B - 8

» OC1B = PB2

TCNTT Can Be Captured by ICRI

Figure 15-3.

Edge change indicates when to capture.

* Caused by an edge change on PBO (if set to input)

Input Capture Unit Block Diagram

TEMP (8-bit)

DATA BUS (3-bit

ICRnH (8-bit)

ICRnL (8-bit)

TCNTnH (8-bit) TCNTnL (8-bit)

WRITE

ICRn (16-bit Register)

TCNTn (16-bit Counter)

T

* Or by an edge change on Analog Comparator

Select bit ACIC in ACSR register indicates which of the

two is chosen

PBO

= ACO®

Analog
Comparator

ICPn

ICNC @L@
Noise Edge
Canceler I Detector »ICFn (IntReq.)

Register Description Timer |

= Control register TCCR1A:
* Positions 7&6 = COMI1A (COM1AO and COM1AT1)
* Positions 5&4 = COM1B (COM1B0O and COM1B1)
* Positions 1&0 2 WGM11 and WGM10 (waveform)

= Control register TCCR1B:
* Positions 3&4 2 WGM13 and WGM12 (waveform continued)
* Positions 0,1,2 = Prescalar as before
* Position ICES1=6 —> Sets input capture edge select:
= 1 = rising
= 0 = falling
* Position ICNC1=7 > Sets input capture noise canceler

* This requires 2 measurements in a row making sure one transmission actually occurred

= Control register TIMSKT:
* Positions 0,1,2 > As before

= TOIE1 (timer overflow interrupt enable)

* OCIETA and OCIE1B (on compare and match interrupt enable)
* Positions ICIE1=5 > Interrupt capture interrupt enable

Analog Comparator Qutput

Figure 22-1. Analog Comparator Block Diagram'?!
BAMDGAF [5]
REFERENCE Lo VCC
Select bandgap - @’ l
reference ACD —
ACIE
AINO

- ANALOG
INTERRUPT COMPARATOR
SELECT IRQ

Let’s connect the -

Timer 2 square PD7 | amt [—FF—— T) i > Al

Y

ACIS1 ACISO ACIC

waveform (PB3)

PD7 vs Bandgap

T Want t t t risi
ADEN D—- > ant to capture at risin
\ TO T/C1 CAPTURE P 9

TRIGGER MUX edge ICES1set to 1;
Since PB3 generates a

r

ADC MULTIPLEXER ACO
CQUTPUTI1) ok

=3

¥

waveform on a cycle by

Notes: 1. See Table 22-1 on page 247. cycle basis, prescalar set
2. Refer to Figure 1-1 on page 2 and Uable 13-9 on page 88 for Analog Comparator pin to 1 for full speed
placement.

PIN Assignment

Table 13-9.

Port D Pins Alternate Functions

Port Pin

Wﬁnmﬁun

FD7 (

AINT (Analog Comparator Negative Inpt
PCINT23 (Pin Change Interrupt 23)

FDG

N

AIND (Analog Comparator Positive In
O | / ompare Match A Output)
PCINT22 (Pin Change Interrupt 22)

T1 (Timer/Counter 1 External Counter Input)
OCOB (Timer/Counterl Output Compare Match B Output)
PCINT21 (Pin Change Interrupt 21)

FD4

XCK (USART External Clock Input/Output)
TO (Timer/Counter 0 External Counter Input)
PCINT20 (Pin Change Interrupt 20)

PD3

INT1 (External Interrupt 1 Input)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT19 (Pin Change Interrupt 19)

FD2

INTO (External Interrupt O Input)
PCINT18 (Pin Change Interrupt 18)

PD1

TXD (USART Output Pin)
PCINT17 (Pin Change Interrupt 17)

FDO

RXD (USART Input Pin)
PCINT16 (Pin Change Interrupt 16)

Register Description Timer |

22.3.2 ACSR - Analog Comparator Control and Status Register

Bit T 5 4 3 A 1 0
0x30 (0x50) | ACD | ACBG) | ACO | ACI | ACIE |(ACIC)[ACIS1 | ACISO | ACSR
Read/Write RW R R RIW RW “RMZ RW RIW
Initial Value 0 0 N/A 0 0 0 0 0

= Let’s program a capture interrupt using the analog comparator

" Need to set register ACSR:

Positions 0&1 2> Interrupt on toggle rise or fall
Positions 2&3 > Capture and Comparator interrupt enable

* We want to enable the capture interrupt (not the comparator interrupt)

Position 4 = Comparator interrupt flag:

" Is set when this interrupt happens, and

* clears when a corresponding ISR executes the final (atomic) RETI instruction

Position 5 = Records ACO raw comparator output:

* in real time nanosec by nanosec

* digital output of the analog comparator (signal ACO)

Position 6 = Connects positive input to a bandgap reference (a temperature independent voltage
reference circuit)

= If 1, then (see description datasheet) fixed bandgap reference is used as input to the analog comparator (usually do not want this)

Position 7 = When switched to 1 the analog comparator is turned off

Example Timer 1

void InitTimer1(void)

{

//Set up timer1 for full speed and capture an edge on analog comparator pin D.7

//Set capture to positive edge; Full counting rate (prescalar set to 1)
TCCR1B = (1 <<ICES1) + 1;

// Turn on timer1 interrupt-on-capture
TIMSK1 = (1 <<ICIE1) ;

// Set analog comp to connect to timer capture input and turn on the band gap reference on the positive input
ACSR = (1<<ACBG) | (1<<ACIC);

// Comparator negative input is AIN1= D.7

DDRD = 0 ;

Full Picture Timers

= 3 initialization codes for Timer O, 1, 2; Timer O implements a 1ms software counter

= Timer 2 (at full speed) generates a square waveform, period 200 cycles

" Waveform drives ACO

= Rising edges ACO causes capture interrupts for Timer 1(at full speed)

= Both timers run at full speed and should be synchronized:

ISR (TIMER1_CAPT_vect)

{

// read timer1 input capture register
T1capture = ICR1 ;

// compute time between captures
period = Tlcapture - lastT1capture;
lastT 1capture = Tlcapture ;

ISR (TIMERO_COMPA_vect)
{

//Decrement the time if not already zero
if (time1>0) =time1;

}

Full Picture Timers

int main(void)

{ Connect PD3 and PB7 !
initialize();
while(1)
{ |_Print the polled period from ACSR.5 which records ACO

// taskl prints the period / Print the polled captured period from ICR1 (done in capture ISR)
if (time1==0){time1=t1; task1();}

What is the difference?

Il for ACO 0->1 t iti ACSR.5
/1 poll for ransition |) Measurement from polled period is off by 10% = Next lab

// as fast as possible and record Timer]
ACObit = ACSR & (1<<ACO) ;
if ((ACObit!=0) && (lastACObit==0))
{
T1poll = TCNT1 ;
periodPoll = T1poll - lastT1poll;
lastT1poll = T1poll ;

}
lastACObit = ACObit ;

}

}

Labs 3b & 3¢

We will remove delay_ms() from the LCD goto and write data commands

The assumption is that the task that calls these commands
is issued every x ms with x much larger than

the combined waiting time over all delay_ms in the LCD commands within the task.

This implies that this task will not be called while LCD commands are being
executed, hence, no multi-threading and our simple solution (without priority queues
etc.) should work

By making the LCD commands non-blocking, other tasks in the main while loop
continue without interruption! In a future lab we plan to demonstrate this.

