
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

ISRs, Timer0
Task Based Programming

Lecture 3a.

Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

Copied from Lecture 3a, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Timer 0

2

Timer 0

3

Divider

/1

/8

/64

Etc.

Clocked: Scaled

internal clock or

external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked

off Mux

T0 pin

Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Channels A and B

 TCNT0 and OCR0A are compared in HW, on equality:

 Can clear TCNT0

 Set interrupt flag (forces a HW event leading to possibly have the interrupt unit make the PC jump to
the corresponding ISR)

 Toggle an I/O line (Channel A), etc.

 TCNT0 and OCR0B are compared in HW, on equality as above

 Except clearing TCNT0 is not an option

 Channels A and B can be used for PWM (discussed in a couple of weeks)

4

TCCR0A, TCCR0B

5

WGM00, WGM01, WGM02 Waveform generation mode

CS00, CS01, CS02 Controls the rate of the Mux

TCCR0A, TCCR0B

6

Waveform Generation Mode sets autoclear on matching OCR0A if TCCR0A |= (1<<WGM01);

• TCNT0 increments to OCR0A, is reset back to 0, and starts incrementing again

• TCNT0 follows a sawtooth

Every increment of TCNT0 is clocked using F_CPU/prescaler

• E.g., for F_CPU = 1MHz, then after TCCR0B = 2; each TCNT0 increment takes 8/(1MHz) = 8 micro seconds

• For OCR0A = 124, TCNT0 transitions from 01, 12, …, 123124, 1240, each transition taking 8

micro second giving one full period of 125*8 micro seconds, i.e., 1ms

Enabling an ISR every period can be used to create a precise 1ms clock!

Building a SW 1ms clock from HW Timer 0

 TOIE0: timer 0 overflow interrupt enable

 OCIE0A: timer 0 output compare interrupt enable A

 Set TIMSK0 = 2;

 Program ISR(TIMER0_COMPA_vect) { SWTaskTimer++;}

 Initialize global variable volatile int SWTaskTimer=0;

 Now SWTaskTimer is a reliable clock which increments every 1ms !

 Suppose your task is to toggle a LED every 1/2 seconds (a 1Hz signal), then you can add in your
main while loop the instruction if (SWTaskTimer == 500) { LEDToggle(); SWTaskTimer == 0;}

 This avoids using the blocking delay functionality and allows other tasks to execute while waiting for
the next moment at which the MCU should toggle the LED again 7

Putting It Together: Task Based Programming

8

….

int TaskTime = 500;

volatile int SWTaskTimer=TaskTime;

ISR(TIMER0_COMPA_vect)

{

if (SWTaskTimer>0) {SWTaskTimer--;}

}

// 1ms ISR for Timer 0 assuming F_CPU = 1MHz

void InitTimer0(void)

{

TCCR0A |= (1<<WGM01);

OCR0A = 124;

TIMSK0 =2;

TCCR0B = 2; //Timer starts

}

….

int main(void)

{

…

InitTimer0();

…

sei(); // Enable global interrupt

while(1)

{

if (SWTaskTimer == 0)

{

Task();

SWTaskTimer == TaskTime;

}

}

return 0;

}

Using Prescalars

 E.g., can we use prescaler = 1 for a 1ms clock?

 Each TCNT0 increment takes 1/(1MHz) = 1 micro seconds

 1ms = 1000 TCNT0 increments OCR0A must be equal to 1000-1=999

 Does not fit an 8-bit register/character!

 E.g., can we use prescalar 64 instead?

 Each TCNT0 increment takes 64/(1MHz) = 64 micro seconds

 1ms = 1ms / 64 us = 1000/64 = 15.625 TCNT0 increments

 OCR0A is an integer: it must be either 14 or 15, giving a 15*64 um = 0.96ms
period or a16*64 um = 1.024ms period

 SW clock is off by 2.4% (OCR0A=15 yields the least noise)

9

Performance Overhead Caused by ISR
 Current setting TCNT0 increments every 8um (prescalar set to 8) and ISR is triggered every

125 increments/ticks (our 1ms clock implementation)

 ISR takes 120 cycles = 120/1MHz = 120um = 120/8 ticks = 15 ticks within one full
period of 125 ticks, 15 are used up for the ISR, 15/125 = 12% of the time (lots of
overhead)

 Can we do better?
 Do we need a 1ms SW counter or does our application allows something larger? E.g., if TaskTime = 500

ms then we can use a 0.5s SW counter! How do you now initialize Timer0 and what performance overhead
does this cost?

 Use higher clock speed: Can we scale the internal clock up to 8MHz? Or do we use an external clock of
say 16MHz? What do we have?

 Can we do worse? E.g., suppose we initialize Timer0 so that each period takes only 96um;
for 8um TCNT0 ticks, set OCR0A = 15. Since 96<120, the ISR is always busy and
incrementing at 120um (not at 96um):
 There is no real forward progress on the main code: a forced 1 instruction every 120um as if the MCU is

running at 4 cycles/ 120 micro second = 1/30 MHz!

 The software clock is completely off

10

Removing Blocking delay_ms()

 Task Based Programming shows how to remove delay_m() from the main while loop

 What about a procedure/task that uses delay_ms()?

 Suppose you create code which writes a 16 character string on each line: this takes
32 LCD_GoTO commands and 32 LCDDataWrites, each taking 4ms due to
delay_ms(1) delays Takes 250ms

 During these 250ms nothing else happens, in particular, if you have a software
routine that adapts a PWM signal using the hardware timers, then this routine is
interrupted for 250ms.

 This means that the PWM signal remains unchanged for this period. If the LCD string
writes are programmed to happen every 1s you will hear clicks/glitches every 1s.

 Even if you write just 1 character every say 40ms, this will introduce a new
frequency of 25Hz (1000/40) to the spectrum of your PWM signal, which is in your
hearing range.

11

Removing Blocking delay_ms()

12

void TaskAB(inputAB)

{

CodeA;

delay_ms(WaitTime);

CodeB;

}

int main(void)

{ …

while(1)

{

if (CondAB)

{

TaskAB(InpAB);

ResetCondAB;

}

}

…

}

void TaskA(InpAB)

{

CodeA;

InputB = CaptureCurrentStateCodeA;

}

ISR(TIMER0_COMPA_vect)

{

if (TimerABWaiting>0 && WaitingFor==B)

{ TimerABWaiting--; }

}

void TaskB(InpB)

{

RecoverStateEndOfCodeA(InpB);

CodeB;

}

int main(void)

{ …

while(1)

{

if (CondAB && WaitingFor==A)

{

TaskA(InpAB);

WaitingFor = B;

TimerABWaiting == WaitTime;

}

if (WaitingFor==B && TimerABWaiting==0)

{

TaskB(InpB);

WaitingFor = A;

ResetCondAB;

}

}

…

}

Serves as

“Busy Signal” and

“FSM state”

Without

WaitingFor

Multiple threads

may start to

interfere

Multiple Threads

 CodeA executes on InpAB and at the end captures it state in InpB

 While waiting for starting execution of CodeB (and resume from state InpB), which
takes WaitTime ms, the main while loop starts to execute CodeA again …

 Ouch: a new end state of CodeA is captured in InpB and overwrites the old one!

 The first call to “TaskAB” will never finish to completion and is essentially discarded.

 We need to remember a priority queue of states InpB for each call to “TaskAB” in
the main while loop needs a pointer structure
 Ouch, what happens if the task consists of multiple code portions separated by delay_ms() commands

 What if the delay_ms() command is in a while loop or for loop …

 What if a task calls another task that has a delay_ms() operation …

 We need a smart queue which remembers all the states (like InpB) of all the procedures the main
while loop is waiting for; in addition it needs to remember what needs to execute in-order (according
to a priorty queue) and what can be executed in parallel ..

 Need an operating system (OS), a tiny one as we have limited storage in the MCU

13

