
ECE3411 – Fall 2016

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: marten.van_dijk@uconn.edu

General Purpose Digital Input
LCD Interfacing

Lecture 2b.

Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

Copied from Lecture 2b, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Ports and their control registers
 I/O ports are labelled B, C, D: special functions are set up for each

 Can set any bit of any port to be input or output within 1 cycle

 Let x be in {B,C,D}
 DDRx takes an 8 bit value:

 If a bit is 1, then the corresponding pin is an output

 If a bit is 0, then the corresponding pin is an input

 PORTx is an I/O register:

 Write to a bit in PORTx sets the corresponding port/pin if the corresponding DDRx bit is set to 1

 PINx contains inputs

 E.g.,
1. DDRx says output

2. Set PORT

3. Read PIN is the value just set in the PORT

 The above registers control each I/O pin independently at a logical level

2

ATmega328P Header file snippet

3

#define PINB _SFR_IO8(0x03)

#define PINB0 0

#define PINB1 1

#define PINB2 2

#define PINB3 3

#define PINB4 4

#define PINB5 5

#define PINB6 6

#define PINB7 7

#define DDRB _SFR_IO8(0x04)

#define DDB0 0

#define DDB1 1

#define DDB2 2

#define DDB3 3

#define DDB4 4

#define DDB5 5

#define DDB6 6

#define DDB7 7

#define PORTB _SFR_IO8(0x05)

#define PORTB0 0

#define PORTB1 1

#define PORTB2 2

#define PORTB3 3

#define PORTB4 4

#define PORTB5 5

#define PORTB6 6

#define PORTB7 7

Reading a logic value from a Port

Suppose we want to read the logic value of 7th pin of Port B:

1. Read the register PINB in a character variable, i.e.
char reg = PINB

2. Let PINB register has a value 0b10101010 then
reg = 0b10101010

3. Create a mask to mask out all the bits in ‘reg’ except for 7th bit position, i.e.
0b10000000 = (1<<7) = (1<<PINB7)

4. Use the mask to mask out all the bits except for the 7th bit, and decide based on
the resultant value, i.e.
if(reg & (1<<PINB7)) { /* 7th pin is logic 1 */ }
else { /* 7th pin is logic 0 */ }

4

Tristate Buffer

 In a naïve button circuit, a closed button connects a pin to the MCU to Gnd:

 When it opens, the MCU end of the button/switch (i.e. pin) dangles in the air

 It acts as an antenna picking up high/low voltages depending on what frequency the local radio
stations / “noisy” electrical appliances broadcast

 Unreliable!

 Need a pull-up resistor (10kOhm) at the pin, so that if the switch is open, the
voltage at the pin is pulled to high

 If the switch is closed, the resistance to Gnd is much lower so that the voltage at the pin is close to
zero

 The pull-up resistor is implicitly implemented by setting the output of the pin to high
as a result of programming PORTx

5

Tristate Buffer

A (PORT) B (DDR) C (PIN)

0 1 Low impedance

High out 0

1 1 Low impedance

High out 1

0 0 High impedance

1 0 High impedance

6

A

B

C
=

A

B

C

 DDR (B) = 0 and PORT (A) = 1: Eliminates static effects/noise and allows to read
port/pin in a coherent fashion  PORT (A) = 1 activates the pull-up resistor and
makes reading PIN (C) reliable

 DDR (B) = 0 and PORT (A) = 0: Is good for creating high impedance if you do not
want the PIN to have any current at all

Debounce State Machine
 Capture a button push is a very fast process (compared to e.g setting a LED which is quite

slow)

 When you press a switch closed, two surface are brought into contact with each other  no
perfect match and electrical contact will be made and unmade a few times till the surfaces
are firm enough together
 The same is true when you release a button, but in reverse

 Bouncing between high and low voltage is often at a timescale of a few us to a few ms  very often you
do not see it

 No debouncing SW:

7

unsigned char PushFlag_NoDebounce; //message indicating a button push

void Task_PollingButton_NoDebounce(void)

{

//button push of the switch connected to B.7

if (~PINB & 0x80) PushFlag_NoDebounce = 1;

else PushFlag_NoDebounce = 0;

}

Debounce State Machine

8

State: NoPush

Check: button push?

State: MaybePush

Check: button push?

State: Pushed

Check: button push?

Yes Yes: PushFlag = 1;

NoNo: PushFlag =0;

No Yes

Checks happen every 30ms

• What happens if this time is increased?

• What happens if this time is decreased?

Debounce State Machine

9

unsigned char PushFlag_Debounce;

unsigned char PushState; //state machine

#define NoPush 1

#define Maybe 2

#define Pushed 3

void Task_PollingButton_Debounce(void)

{

switch (PushState)

{

case NoPush:

if (~PINB & 0x08) PushState=Maybe;

else PushState=NoPush;

break;

case Maybe:

if (~PINB & 0x08)

{

PushState=Pushed;

PushFlag_Debounce=1;

}

else

{

PushState=NoPush;

PushFlag_Debounce=0;

}

break;

case Pushed:

if (~PINB & 0x08) PushState=Pushed;

else PushState=Maybe;

break;

}

}

Debounce State Machine

 A SW debounce state machine can also be made for a keypad

 Depending on the application, you may want to add more actions to the Finite State
Machine (FSM). In other words, you may want to synchronize your FSM with other
tasks.

 E.g., as soon as PushFlag =1 is set, I may want to increment a counter

 E.g., during the state transition from NoPush to Maybe, the actual time (possibly as a translation from
the HW timers hardcoded in the MCU) is recorded. As soon as NoPush changes into Pushed, this
recorded time is considered to correspond to the moment of the most recent button push.

10

Hardware Debouncer

 HW debouncers are also possible:

 Just by using a low pass filter (a capacitor across the two contacts of the switch)

 However everyone debounces in SW, saving a few cents per capacitor

 Figure shows the schematic of the push button onboard
ATmega328p Xplained Mini kit

 This is Hardware Debounced switch (Notice the capacitor C204)

 The switch is connected to PB7

 We will do software debouncing for this switch as well anyway.

11

LCD
 LCD has a command state machine:

 Erase, Draw character, etc.

 Notice that (see http://www.atmel.com/Images/Atmel-42287-ATmega328P-
Xplained-Mini-User-Guide_UserGuide.pdf) the MCU is programmed through port B
and C:

 Cannot use PB3, PB4, PB5, PC6 to connect to LCD

 If these would be connected to the databus for the LCD, then if a LCD read operation is interrupted,
then the LCD is driving the bus  programmer cannot program the chip  program failure

12

http://www.atmel.com/Images/Atmel-42287-ATmega328P-Xplained-Mini-User-Guide_UserGuide.pdf

LCD

 LCD must be properly connected, otherwise the LCD does not acknowledge and the
program hangs forever

 LCD library (lcd_lib.c and lcd_lib.h) uses #include <util/delay.h>

 Allows using delay_ms() and delay_us()

 We will use interrupts to program delay_ms() in next lectures (so that other computations can take
place in the meantime)

 Principle: Never use ms delays, but sometimes you may use a us delay because this is hard to get by
using an interrupt

 Need to tell the LCD the clock rate of the MCU by setting
#define F_CPU 16000000UL

13

LCD Example Display

14

Number = Counter

o ---------------------->

<-----------------------

//For accessing program space:

#include <avr/pgmspace.h>

const int8_t LCD_number[] PROGMEM=“Number=\0”;

Is the same as char Name
[] tells C to look at the actual number

of characters in the string and reserve

and appropriate a chunk to hold it

Keyword tells C

to store the string

in program

memory (flash)

• All strings in C are terminated

by a \0 (i.e., the all-zero byte)

• The string “Number=\0” is

converted into ASCII integers,

each integer is stored in 1 byte

How do we store the constant string “Number=\0” ?

Many AVRs have limited amount of RAM in which to store data, but may have more Flash space available. The

AVR is a Harvard architecture processor, where Flash is used for the program, RAM is used for data, and they

each have separate address spaces.

• Let’s use flash for storing data!

LCD Example

15

/**

* Written by Ruibing Wang (rw98@cornell.edu)

* Mods for 644 by brl4@cornell.edu

* Feb 2010

*

* Slightly modified for ECE-3411

* by Marten van Dijk, Jan 2014

*/

#define F_CPU 16000000UL

#include <avr/io.h>

#include <avr/pgmspace.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <util/delay.h>

#include "lcd_lib.h"

const uint8_t LCD_initialize[] PROGMEM = "LCD Initialized\0";

const uint8_t LCD_number[] PROGMEM = "Number=\0";

// LCD display buffer: general purpose print buffer in RAM

// LCD can print 16 characters, 17th character holds \0

uint8_t lcd_buffer[17];

uint16_t count; // a number to display on the LCD

uint8_t anipos, dir; // move a character around

LCD Example (cont.)

16

// task writes to LCD every 200 mSec

void task (void)

{

// increment time counter and format string

sprintf(lcd_buffer,"%-i",count++);

LCDGotoXY(7, 0);

// display the count

LCDstring(lcd_buffer, strlen(lcd_buffer));

// now move a char left and right

LCDGotoXY(anipos,1); //second line

LcdDataWrite(' ');

if (anipos>=7) dir=-1; // check boundaries

if (anipos<=0) dir=1;

anipos =anipos+dir;

LCDGotoXY(anipos,1); //second line

LcdDataWrite('o');

}

Prints to a string destination (not a file unit);

C does internal transformation from integer

to string format.

LCD Example (cont.)

17

int main(void)

{

// Initializations:

initialize_LCD(); //initialize the display

LCDcursorOFF(); // Turn off the cursor

CopyStringtoLCD(LCD_initialize, 0, 0);

_delay_ms(2000); // Display message for 2 seconds

LCDclr(); //clear the display

// put some stuff on LCD starting at char=0 line=0

CopyStringtoLCD(LCD_number, 0, 0);

// Initialize animation state variables

count=0;

anipos = 0;

LCDGotoXY(anipos,1); //second line

LcdDataWrite('o');

while(1) //main task scheduler loop

{

task();

_delay_ms(200);

}

}

This stalls any other computation …

In next lectures we will use HW timer

interrupts that can be used to wake

up task() every 200ms. During task()

idle time of 200ms other tasks can

be completed.

LCD Pin Assignment

18

Taken from LCD Datasheet available here

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ielt1nnx6r62nf

Block Diagram

 Because of limited number of I/O pins on Xplained
Mini kit, we use LCD in 4-bit mode

19

Pin1: VSS  GND

Pin2: VCC  5V
Pin3: VEE  GND
Pin4: RS  PC4
Pin5: R/W  GND
Pin6: E  PC5

Pin7: DB0  N/C
Pin8: DB1  N/C
Pin9: DB2  N/C
Pin10: DB3  N/C
Pin11: DB4  PC0
Pin12: DB5  PC1

Pin13: DB6  PC2
Pin14: DB7  PC3

Pin15:

CATHODE

 GND

Pin16:

ANODE

 5V

Taken from LCD Datasheet available here

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ielt1nnx6r62nf

Write Operation Timing

20

void LcdCommandWrite_UpperNibble(uint8_t cm)

{

// Give the higher half of ‘cm’ to DATA_PORT

DATA_PORT = (DATA_PORT & 0xf0) | (cm >> 4);

// Setting RS=0 to choose the instruction register

// as we are writing a command

CTRL_PORT &= ~(1<<RS);

// Setting ENABLE=1

CTRL_PORT |= (1<<ENABLE);

// Allow the LCD controller to successfully read command in,

// minimum 40 µs

_delay_ms(1);

// Setting ENABLE=0

CTRL_PORT &= ~(1<<ENABLE);

// Allow long enough delay for instruction writing

_delay_ms(1);

} Taken from LCD Datasheet available here

See lcd.h for the definition of DATA_PORT and CTRL_PORT

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ielt1nnx6r62nf

Read Operation Timing

 Read operation also follows similar
timing as Write operation

 Typically only a ‘Busy Flag’ is to be read

 We don’t read ‘Busy Flag’, instead we
provide the LCD controller long enough
time to process the command

 Hence we only perform LCD writes

 R/W signal is connected to GND, i.e. to always
perform writes

 This saves another I/O pin

21

Taken from LCD Datasheet available here

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ielt1nnx6r62nf

Timing Characteristics

22

Taken from LCD Datasheet available here

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ielt1nnx6r62nf

LCD Instruction Set

23

Taken from LCD Controller Datasheet available here

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ielt2j44djm36m

LCD Instruction Set (cont.)

24

LCD Instruction Set (cont.)

25

LCD Initialization: 8-bit Mode

26

LCD Initialization: 8-bit Mode (cont.)

27

LCD Initialization: 4-bit Mode

28

LcdCommandWrite_UpperNibble(0x30);

_delay_ms(4.1);

LcdCommandWrite_UpperNibble(0x30);

_delay_us(100);

LCD Initialization: 4-bit Mode (cont.)

29

LcdCommandWrite_UpperNibble(0x30);

// function set: 4-bit interface

LcdCommandWrite_UpperNibble(0x20);

// 4-bit interface, 2 lines, 5x8 font

LcdCommandWrite(0x28);

// turn display off, cursor off, no blinking

LcdCommandWrite(0x08);

// clear display, set address counter to zero

LcdCommandWrite(0x01);

// entry mode set

LcdCommandWrite(0x06);

LCD Command Write (4-bit Mode)

30

void LcdCommandWrite(uint8_t cm)

{

// First send higher 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (cm >> 4); //give the higher half of cm to DATA_PORT

CTRL_PORT &= ~(1<<RS); //setting RS=0 to choose the instruction register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay for instruction writing

// Send lower 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (cm & 0x0f); //give the lower half of cm to DATA_PORT

CTRL_PORT &= ~(1<<RS); //setting RS=0 to choose the instruction register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay for instruction writing

}

LCD Data Write (4-bit Mode)

31

void LcdDataWrite(uint8_t da)

{

// First send higher 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4); //give the higher half of cm to DATA_PORT

CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay

// Send lower 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f); //give the lower half of cm to DATA_PORT

CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay

}

