
ECE3411 – Fall 2016

Marten van Dijk, Chenglu
Department of Electrical & Computer Engineering

University of Connecticut

Email: {marten.van_dijk, chenglu.jin}@uconn.edu

I2C
RedBot

Lab 7a-b.

Slides of I2C are copied from Lab 7b, ECE3411 – Fall 2015,

by Marten van Dijk and Syed Kamran Haider

Some of these slides are extracted or copied from “RedBot

Project” offered at Sung Yeul Park in Spring 2016

I2C: Inter Integrated Circuit
 Also known as Two Wire Interface (TWI)

 Allows up to 128 different devices to be connected using only two bi-directional bus lines,
one for clock (SCL) and one for data (SDA).

 A pull-up resistor (typically 10 kΩ) is needed for each of the TWI bus lines.

 All devices connected to the bus have individual addresses.

2

10 kΩ10 kΩ

I2C Terminologies

 I2C (TWI) protocol allows several devices (up to 128) to be connected.

 Each device is identified by a configurable 7-bit address.

 Each device can communicate with any other device

 The transmitter address the receiver by its 7-bit address.

3

I2C START and STOP Conditions

 START and STOP conditions are signaled by changing the level of the SDA line when
the SCL line is high.

 When a new START condition is issued between a START and STOP condition, this is
referred to as a REPEATED START condition

4

I2C Address Packet Format

 All address packets transmitted on the TWI bus are 9 bits long:

 7 address bits, one READ/WRITE control bit and an acknowledge bit.

 When a Slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle.

 The Master can then transmit a STOP condition, or a REPEATED START condition to
initiate a new transmission.

5

I2C Data Packet Format

 All data packets transmitted on the TWI bus are 9 bits long:

 One data byte and one acknowledge bit.

 An Acknowledge (ACK) is signaled by the Receiver pulling the SDA line low during
the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is signaled.

6

I2C Bus Arbitration
 Arbitration is carried out by all masters continuously monitoring the SDA line after outputting

data.

 If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration.

7

A typical I2C Transmission

8

A typical I2C Transmission Summary

 When the TWI has finished an operation and expects application response, the
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.

 When the TWINT Flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the
value to be transmitted in the next bus cycle.

 After all TWI Register updates and other pending application software tasks have
been completed, TWCR is written. When writing TWCR, the TWINT bit should be
set.

 Writing a one to TWINT clears the flag. The TWI will then commence executing
whatever operation was specified by the TWCR setting.

9

I2C Transmission Example

10

uint8_t TWI_Master_Transmit(uint8_t Address, uint8_t Data)

{

TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN); // Send START condition

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != START) // Check value of TWI Status Register.

ERROR();

TWDR = (Address << 1) | (WRITE); // Load SLA_W (Slave Address & Write) into TWDR Register.

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit in TWCR to start transmission of address.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != MT_SLA_ACK) // Check value of TWI Status Register.

ERROR();

TWDR = Data; // Load DATA into TWDR Register.

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit in TWCR to start transmission of data.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != MT_DATA_ACK) // Check value of TWI Status Register.

ERROR();

TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO); // Transmit STOP condition.

}

Note: The code above assumes that several definitions have been made, for example by using include-files.

I2C Reception Example

11

uint8_t TWI_Slave_Receive(void)

{

TWCR = (1<<TWEA)|(1<<TWEN); // Enable TWI & Acknowledgements.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set (once this slave is addressed)

if ((TWSR & 0xF8) != 0x60) // Check value of TWI Status Register.

ERROR();

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit start reception of data.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != 0x80) // Check if Data has been received & ACK has been returned

ERROR();

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit.

return TWDR; // Read TWDR Register.

}

Note: The code above assumes that several definitions have been made, for example by using include-files.

void TWI_Slave_Initialize(uint8_t Address)

{

TWAR = (Address << 1)|(1); // Load Slave Address into TWAR Register.

TWCR = (1<<TWEA)|(1<<TWEN); // Enable TWI & Acknowledgements.

}

Task1: I2C Master Slave Communication
Write a program to send ADC voltage readings to your friend’s board over I2C bus.

 Configure your board as I2C Master (fSCL = 200kHz) and ask your friend to configure his as I2C
Slave.

 Make proper wire connections of SCK and SDA pins between the two boards.
Don’t forget to put a 10 kΩ pullup resister on each line.

 In Master MCU, read a potentiometer’s voltage through ADC every 100ms (only upper 8 bits).

 Transmit Master’s voltage value every 100ms.

 For Master, print the transmitted reading on UART.

 For Slave, print the received reading on UART.

Homework: Use I2C interrupts on both Master and Slave sides for non-blocking I2C
implementation.

12

RedBot

13

 Using Sparkfun’s RedBot Line Follower kit, you
will implement a small robot that follows a line of
electrical tape.

 Infrared Sensors are used to sample the desired
path in reference to the robot’s trajectory.

 Movement is actuated by two PWM controlled H-
bridge modules.

 Description:
https://www.sparkfun.com/products/13166

 Get started:
https://learn.sparkfun.com/tutorials/getting-started-
with-the-redbot

 Schematic:
https://cdn.sparkfun.com/datasheets/Robotics/RedBot
_Mainboard_v14.pdf

Warning: Please do not write anything to EEPROM, since

this seems to prevent further programming of the MCU.

https://www.sparkfun.com/products/13166
https://learn.sparkfun.com/tutorials/getting-started-with-the-redbot
https://cdn.sparkfun.com/datasheets/Robotics/RedBot_Mainboard_v14.pdf

Using Atmel Studio to Program Arduino Board

 Since the board on RedBot is an Arduino Board, we are not able to directly use
Atmel Studio to program it. We need to setup an external programmer in Atmel
Studio for programming this board.

 Please follow the following steps to setup the external programmer.

1. Download Avrdude from http://mirror.rackdc.com/savannah//avrdude/avrdude-
5.11-Patch7610-win32.zip

2. Unzip the downloaded file, rename the directory to avrdude, and copy it into your
C drive

3. Connect your board to your computer, open Device Manager, check the COM
port.

4. Open Atmel Studio, go to Tools -> External Tools

14

http://mirror.rackdc.com/savannah/avrdude/avrdude-5.11-Patch7610-win32.zip

Setup External Programmer

5. Fill the dialog box like this:

6. The Arguments field in the dialog box is

-C "C:\avrdude\avrdude.conf" -p atmega328p -c arduino -P COM9
-b 115200 -U flash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

for most of

The Arguments field in the dialog box is

-C "C:\avrdude\avrdude.conf" -p atmega328p -c arduino -P COM9
-b 57600 -U flash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

for most of

15

Note: Update your COM number accordingly. If your programmer does not

work after setup, change to the other argument. It must be one of these two.

Use External Programmer

16

Since the MCU on this board is also ATMega 328P, you just need to

create the project and program as usual.

Then first build the project, and click Tools-> Arduino Programmer

to program your board.

Notice: This Arduino Programmer can only be used to program the

board (not to build the solution), so you should always rebuild your

solution before you program it.

RedBot Mainboard

17

ATMega 328P Pin Assignment

18

Pin # Pin Name Port Name Ext Circuit

19, 22~29 ADC PC0~5 ADC input

30, 31 USART PD0, PO1 XBEE

32, 2 L_CTRL_1/2 PD2, PD4 Left Motor

1, 13~15 SERVO_1/2/3/4 PD3, PB1, PB2,

PB3

9~10 PWML/R PD5, PD6

11~12 R_CTRL_1/2 PD7, PB0 Right Motor

29 RESET PC6

7,8 CLK PB6, PB7

18, 4, 6 AVCC, VCC

21, 3, 5 AGND, GND

20 AREF

16, 17 MISO, SCK PB4, PB5 6PIN ISP

Line Sensor

19

• QRE1113: Miniature Reflective Object Sensors

• The sensor works by detecting reflected light

coming from its own infrared LED.

• By measuring the amount of reflected infrared

light, it can detect transitions from light to dark

(lines) or even objects directly in front of it.

Motor Control Mechanism

20

Task 2a: Reading Data from Sensors

 You are required to first initialize ADC and sample three sensors in a round robin
fashion.

 Print ADC reads on your screen over UART.

 Test your sensors over a white surface and a black electrical tape, and figure out a
proper threshold to distinguish “on tape” and “off tape” states.

21

Task 2b: Controlling Motors

 Generate the correct command for your motors.

 Test clockwise and counter-clockwise rotation.

 Test stop command.

 Generate a PWM signal to control the speed of your motors.

22

Task 2c: Integration

 Use the data from three sensors to adjust the speed and direction of two motors.

 Test your simple line follower.

23

Task 3: PID Control

 Improve your line follower by implementing a PID controller in order to make your
RedBot move more smoothly.

 Hint: In order to generate an error value in the PID controller, you can first use your
thresholds to convert three raw ADC reads to a three-bit value. Then convert this
three-bit value into an error value which should be a signed value.
 E.g. when the left sensor is on the tape and the other two are not on the tape, you first convert it to

0b100, and then convert it to error value -2.

 E.g. when the left sensor and middle sensor are on the tape, convert it to error -1.

 This requires you to use fuzzy thresholds, e.g., you can take an average of the sensor values for a
white surface and a black tape.

 Hint: The integral of errors can be calculated as a summation of all the errors.

 Hint: The derivative of errors can be calculated as current error – last error.

 Tip: The constant for the I term and D term do not need to be large in comparison
with the constant for the P term.

24

Task 4: Counting the laps

 There is one spot on the track where all the three sensors will sample black tapes.

 Use this as an indicator of having completed one lap.

 Whenever the RedBot passes this area, you need to toggle the on-board LED D13, which is connected
with PB5.

 Hint: Don’t forget to implement a debounced button to prevent toggling this LED more than once
within one lap.

 You need to demonstrate your RedBot on Dec. 7th during the lab hours.

 Submit your lab report on Dec. 7th together with your source code.

25

