ECE3411 – Fall 2016 Lab 6c.

Digital to Analogue Conversion (DAC)

Marten van Dijk, Chenglu Jin

Department of Electrical & Computer Engineering University of Connecticut Email: {marten.van_dijk, chenglu.jin}@uconn.edu

Copied from Lab 7a, ECE3411 – Fall 2015, by Marten van Dijk and Syed Kamran Haider With the help of: ATmega328P Datasheet MCP4921 Datasheet

DAC: Digital to Analog Converter

We use an external DAC for this lab: MCP4921

- 12 bit resolution.
- SPI interface.

1	V _{DD}	Positive Power Supply Input (2.7V to 5.5V)				
2	CS	Chip Select Input. (SPI Slave Select)				
3	SCK	SPI Serial Clock Input				
4	SDI	SPI Serial Data Input (MOSI)				
5	LDAC	Synchronization input used to transfer DAC settings from serial latches to the output latches.				
6		DAC_A Voltage Input (AV _{SS} to V _{DD})				
7	AV _{SS}	Analog ground				
8	V _{OUTA}	DAC _A Output				

DAC SPI Interface

MCP4921 acts as SPI Slave and only receives data \rightarrow MISO is not connected.

- Connect the ATmega328P with MCP4921 as shown in the figure below.
- Notice that LDAC pin also needs to be connected to a GPIO pin on ATmega328P.

DAC SPI Frame Format

- MCP4921 receives a 16-bit word from the MCU in two 8-bit SPI transactions.
- The format of the 16-bit frame containing 4 command and 12 data bits is shown below.

REGISTER 5-1: WRITE COMMAND REGISTER

Upper Half:									
W-x	W-x	W-x	W-0	W-x	W-x	W-x	W-x		
Ā/B	BUF	GA	SHDN	D11	D10	D9	D8		
bit 15			•			•	bit 8		

Lower Half:									
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x		
D7	D6	D5	D4	D3	D2	D1	D0		
bit 7	•	ŀ	•	•	•	•	bit 0		

DAC Command Bits

- The upper 4 bits of the 16 bit word are DAC command bits.
- The description of the 16 bit frame bits is as follows:
 - bit 15 **A/B:** DAC_A or DAC_B Select bit
 - $1 = Write to DAC_B$
 - \circ = Write to DAC_A
 - bit 14 **BUF:** V_{REF} Input Buffer Control bit
 - 1 = Buffered
 - 0 = Unbuffered
 - bit 13 **GA**: Output Gain Select bit
 - $1 = 1x (V_{OUT} = V_{REF} * D/4096)$
 - $o = 2x (V_{OUT} = 2 * V_{REF} * D/4096)$
 - bit 12 **SHDN**: Output Power Down Control bit
 - 1 = Output Power Down Control bit
 - o = Output buffer disabled, Output is high impedance
 - bit 11-0 **D11:D0:** DAC Data bits

12 bit number "D" which sets the output value. Contains a value between 0 and 4095.

DAC SPI Interface Timing

- The figure below shows the timing of one SPI transaction (command + data) between the MCU and DAC.
- You need to implement the same timing through SPI interface on ATmega328P.

Task1: Controlling LED Glow

Write a simple program to control the glow of a LED using DAC. In particular:

- Configure the SPI in Master mode.
- Read a potentiometer's voltage through ADC every 100ms (full 10 bit resolution).
- Normalize the 10-bit ADC reading to a 12-bit digital value for DAC.
- Transmit the 4-bit command and 12-bit data value to DAC over SPI.
- Don't forget to generate a LOW pulse at LDAC pin after transmission.
- Print the ADC's and DAC's readings on LCD.

Homework: Use DAC to generate a 100Hz sine wave with a peak-to-peak amplitude of 5V.