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Starting a Debugging Session

= Create a new Atmel Studio project

= Select “Simulator” from the Tool Selection tab
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Starting a Debugging Session

= Build the project. (Hit F7)
* From Debug tab, select “Start Debugging and Break”

= The debugger pauses at the start of main.
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Start of Debugging Session

* The debugger pauses at the start of main.

f_“" W11_Lab1 (Debugging) - AtmelStudio
File Edit View VAssistX ASF Prgject Build Debug Tools Window Help

A R IR ™ - BN N IR IR R e DY

DXL Ao S E @9 0 b|6sELE3E T T He

i Bl | Debug

W11_Labl.c X

» main - :I » int main{void)

-lint main(void)

>0 | initialize all();
sei(); // Enable global interrupts

while (1)
{

// Nothing to do.
}



Peripheral Registers in Debugging Session

= Click on |/O view button to see all peripheral registers in an 1/O Window
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Adding a Breakpoint in Debugging Session

= Select any instruction in the code

= Right Click and insert a Breakpoint as follows

J// Timer 1 Compare Match A ISR (TCNT1 = OCR1A)
=TSR (TIMER1_COMPA_vect)

{
// Load new Time period
OCR1A = time_period;
Goto Implementation Alt+G
// Load new duty cyc Refactor (VA) ,
OCR1B = duty cycle; )
} Surround With (WVA) 3
=, Insert Snippet... Ctrl+K, Ctrl+X
i ?R (TIMERG_COMPA_vect) | Q) surround With. Ctrl+K, Ctrl+S
time++; Breakpoint ’ Add Databreakpoint Ctrl+Shift+R
a = time*0.001; //co )
duty cycle = sin(2*M “ @ Insert Breakpoint
} - H QUiCkWatCh... 5h|ﬁ‘|‘F9 |n5er‘t Tracepmint
Pin To Source
—lint main(void) . _
% Show Next Statement Alt+Num *

{



Continue to the next Breakpoint

= After inserting a breakpoint, click Continue (F5)

® The program will stop at Breakpoint as shown in the right window.
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Disassembly W11 _Labl.c X Continue (F5)
» W11_Labl.c v| = I » C\Users\e\Google Drive\Microcontrollers Course\ECE3411_Fall15\Labs\Solutions\W11_Lab1\W11_

TCCROA |= (1<<WGMA1); // turn on clear-on-match, CTC mode Xfr Timer 1 CCITH[]E.!F‘E Match A ISR (TCNT]. — DCR].}':'I}
TCCROB = (1<<CS@@) | (1<<CS@1); // Set pre-scalar to divide by 64
) =TSR (TIMER1 COMPA_vect)
// Timer 1 Compare Match A ISR (TCNT1 = OCR1A) { . .
SISR (TIMERL COMPA vect) // Load new Time period
{ =1 Bl OCR1A = time_period;|

// Load new Time period

Y ocka - cine perios;
// Load new duty cycle

// Load new duty cycle E _ .
OCR1B = duty_cycle; OCR1B = duty_cycle;
} ¥
—JTSR(TIMER®_COMPA_vect)
{
time++;

a = time*0.001; //convert to actual time in ms
duty cycle = sin(2*M PI*62.5*%(a));



Observing Register/Variable Values at a Breakpoint

= Select particular peripheral and then the register to observe the value. (shown on left)

" Type variable names from your code in Watch Window to monitor their values. (shown on right)
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Files for today’s Lab Tasks

= Download the zipped file from the link below.

http: //www.piazza.com/class profile /get resource /idhg4rgfhem1uh/igsgolgx1j86é0ok

= This file contains three C code files.
= Task1.c
= Task2.c
* Task3.c


http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/igsgo1qx1j86ok

Taskl1,2: Debugging a buggy PWM

The codes in Task1.c and Task2.c generate a ‘rectified’ 62.5Hz sine waveform using a
64kHz PWM.

The PWM signal is generated at PB2 using Timer1 such that the duty cycle of the PWM
is a function of a 62.5Hz sine wave. l.e. for f = 62.5

duty cycle « |sin(2rft)|

There are some bugs in these codes. Your task is to use Atmel Studio debugger to find
the bugs in these codes.



Task3: Debugging a buggy Stopwatch

The code in Task3.c is a buggy implementation of a Stopwatch (1ms resolution) for
measuring the total time and the individual lap times of a car racer. The detailed
functionality is as follows:

When SW1 is pressed (i.e. start of the race), Timer1 starts counting the number of
milliseconds.

If SW2 is pressed while the stopwatch is counting (i.e. during the race), it records the

current time and prints the time elapsed between this and the previous most recent push.
This shows the lap time.

Finally when SW1 is pressed again (i.e. at the end of the race), the total time and the
best (i.e. shortest) lap times are printed on the LCD.

TimerO is used to count a debounce delay of 16ms for SW1 and SW2.

Your task is to find the bugs in this code and make it run on your MCU boards!



