
ECE3411 – Fall 2016

Marten van Dijk, Chenglu Jin
Department of Electrical & Computer Engineering

University of Connecticut

Email: {marten.van_dijk, chenglu.jin}@uconn.edu

Debugging using Atmel Studio

Lab 5c.

Copied from Lab 5c, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Starting a Debugging Session

 Create a new Atmel Studio project

 Select “Simulator” from the Tool Selection tab

2

Starting a Debugging Session

 Build the project. (Hit F7)

 From Debug tab, select “Start Debugging and Break”

 The debugger pauses at the start of main.

3

Start of Debugging Session

 The debugger pauses at the start of main.

4

Peripheral Registers in Debugging Session

 Click on I/O view button to see all peripheral registers in an I/O Window

5

I/O View Button

I/O Registers

Window

Adding a Breakpoint in Debugging Session

 Select any instruction in the code

 Right Click and insert a Breakpoint as follows

6

Continue to the next Breakpoint
 After inserting a breakpoint, click Continue (F5)

 The program will stop at Breakpoint as shown in the right window.

7

Observing Register/Variable Values at a Breakpoint

 Select particular peripheral and then the register to observe the value. (shown on left)

 Type variable names from your code in Watch Window to monitor their values. (shown on right)

8

Files for today’s Lab Tasks

 Download the zipped file from the link below.

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/igsgo1qx1j86ok

 This file contains three C code files.

 Task1.c

 Task2.c

 Task3.c

9

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/igsgo1qx1j86ok

Task1,2: Debugging a buggy PWM

The codes in Task1.c and Task2.c generate a ‘rectified’ 62.5Hz sine waveform using a
64kHz PWM.

The PWM signal is generated at PB2 using Timer1 such that the duty cycle of the PWM
is a function of a 62.5Hz sine wave. I.e. for f = 62.5

𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 ∝ |sin(2𝜋𝑓𝑡)|

 There are some bugs in these codes. Your task is to use Atmel Studio debugger to find
the bugs in these codes.

10

Task3: Debugging a buggy Stopwatch

The code in Task3.c is a buggy implementation of a Stopwatch (1ms resolution) for
measuring the total time and the individual lap times of a car racer. The detailed
functionality is as follows:

 When SW1 is pressed (i.e. start of the race), Timer1 starts counting the number of
milliseconds.

 If SW2 is pressed while the stopwatch is counting (i.e. during the race), it records the
current time and prints the time elapsed between this and the previous most recent push.
This shows the lap time.

 Finally when SW1 is pressed again (i.e. at the end of the race), the total time and the
best (i.e. shortest) lap times are printed on the LCD.

 Timer0 is used to count a debounce delay of 16ms for SW1 and SW2.

Your task is to find the bugs in this code and make it run on your MCU boards!

11

