ECE3411 — Fall 2016
Lab 3a.

General Purpose Digital Input (Debouncing)
Non-Blocking UART (using ISRs)

Marten van Dijk, Chenglu Jin
Department of Electrical & Computer Engineering
University of Connecticut
Email: {marten.van_dijk, chenglu.jin}@uconn.edu

Copied from Lab 3a, ECE3411 —Fall 2015, by
Marten van Dijk and Syed Kamran Haider

UCONN

Recap

In the last lab, we implemented the following:

" Reading a Non-Debounced Switch

* MCU may see a lot of glitches in the input from a Non-Debounced switch

" Reading a Debounced Switch

= 3-state Debounce State Machine filters out glitches, but not all of them!

= Display some results on LCD

Do you see any problems with this
Debounce State Machine?

No Yes

Yes Yes: PushFlag = 1;

State: NoPush State: MaybePush State: Pushed

Check: button push? Check: button push?

— —

No: PushFlag =0; No

Check: button push?

* This state machine filters out glitches which result in NoPush = MaybePush = NoPush transitions
* What happens if a glitch causes Pushed = MaybePush = Pushed transitions sequence?

* The software mistakenly thinks that a new button-push has occurred
* Fix this problem in Task 1 of this lab

Push Switch to use

‘@

N

7’

» K
e ..
I--
- I..
- - ey~ - -
- - .b.
- » 2] - -
- - ~: £
- - *10[0-0 0-0% G = = o .
» . ’p"/ltf ¢ P——— -
- - e e v 3 U . .
|= P2 ATmega166P8 e . - . = »
U- .- .. p
- - ...
.b .- .w »
- e el .- e »
-3 Ol - -
~; L p
e - ~3 B TR 2
oot '“‘ - - L
o - - -
e - .. - -
ol - “ . -
-ne L - -
- .. . - -
e - -
- - " - - .. o
L L
- - -
.
-~ L3 PEE) -
.. .-
R -
.. ..
AR L L
' abcde fgt

Switch 2

LCD Interfacing

* We are going to use the LCD in 4-bit mode

* Only 4 data wires are required instead of 8

= LCD pin assignment is as follows:

No. Symbol Connections with ATmega328P
1,3 Veor Vie GND

2 Vee 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DBO-DB3 Not Connected

11-14 DB4-DB7 PCO-PC3

‘ PinT: Vi

»

b | Pin2: Vee
L./ Pin3: Vi,
| Pind: RS
LJ Pin5: R/W
"‘ Pin6: E

LJ Pin7: DBO
gol| Pin8: DB1
gd| PinS: DB2
'ﬁ‘ Pin10: DB3
- Pin11:DB4
gl Pin12: DB5
g Pin1 3: DB6
bd| Pin14: DB7

Pin16: Pin15:
ANODE CATHODE
S 5v > GND 5

- GND

> 5v
> GND
> pC4
> GND
> PC5
> N/C
> N/C
> N/C
> N/C
> PCO
> PCI
> pC2
> PC3

LCD Test Program

YA Preamble -------- //
#define F_CPU 16000000UL

#include <avr/io.h>
#include <util/delay.h>
#include "lcd_lib.h"

int main(void) {

/] ==mmmnne Inits --------- //

initialize_LCD();

LcdDataWrite('A');
LcdDataWrite('B');
LcdDataWrite(‘C');

/] ===-- Event loop ------ //
while (1) {

/* Nothing to do */
} /* End event loop */
return (0);

/* Tells the Clock Freq to the Compiler. */
/* Defines pins, ports etc. */
/* Functions to waste time */

/* LCD Library */

/* Initialize LCD */

/* Print a few characters for test */

Task 1: Extending the Debounce State Machine &
LED Frequency Toggling

Extend the 3-State Debounce State Machine such that the transition from the
state Pushed = Maybe 2 Pushed is not considered a new button push

This eliminates the possible errors of the 3-State Debounce State Machine

Use this extended debounce state machine to toggle the LED blinking
frequency (Lab2b: Task1) using the switch

Each button push should toggle the LED blinking frequency between 2Hz and 8Hz. (So, no
matter the duration of the button push, a single button push should toggle the frequency
only once.)

Also print the frequency of the current mode on LCD

Don’t forget you can use the debugging techniques we learned last week to fix your buggy
code.

Task 2: Non-Blocking UART Reads

Modify the LED frequency switching task (Lab2b: Task3) such that the UART reads
are non-blocking. In other words, the LED should keep blinking when the user is
asked if he wants to change the LED frequency.

Use UART interrupt service routine to receive the characters in a buffer (as shown in the lecture)

Implement Task_InterpretReadBuffer() function to:
Properly handle the frequency switching
Display the current frequency on LCD

