
ECE3411 – Fall 2016

Marten van Dijk, Chenglu Jin
Department of Electrical & Computer Engineering

University of Connecticut

Email: {marten.van_dijk, chenglu.jin}@uconn.edu

General Purpose Digital Input (Debouncing)
Non-Blocking UART (using ISRs)

Lab 3a.

Copied from Lab 3a, ECE3411 – Fall 2015, by

Marten van Dijk and Syed Kamran Haider

Recap

In the last lab, we implemented the following:

 Reading a Non-Debounced Switch

 MCU may see a lot of glitches in the input from a Non-Debounced switch

 Reading a Debounced Switch

 3-state Debounce State Machine filters out glitches, but not all of them!

 Display some results on LCD

2

Do you see any problems with this
Debounce State Machine?

3

State: NoPush

Check: button push?

State: MaybePush

Check: button push?

State: Pushed

Check: button push?

Yes Yes: PushFlag = 1;

NoNo: PushFlag =0;

No Yes

• This state machine filters out glitches which result in NoPush MaybePush NoPush transitions

• What happens if a glitch causes Pushed MaybePush Pushed transitions sequence?
• The software mistakenly thinks that a new button-push has occurred

• Fix this problem in Task 1 of this lab

Push Switch to use

4

Switch 2

LCD Interfacing

 We are going to use the LCD in 4-bit mode

 Only 4 data wires are required instead of 8

 LCD pin assignment is as follows:

5

No. Symbol Connections with ATmega328P

1, 3 VSS, VEE GND

2 VCC 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DB0-DB3 Not Connected

11-14 DB4-DB7 PC0-PC3

Pin1: VSS GND

Pin2: VCC 5V
Pin3: VEE GND
Pin4: RS PC4
Pin5: R/W GND
Pin6: E PC5

Pin7: DB0 N/C
Pin8: DB1 N/C
Pin9: DB2 N/C
Pin10: DB3 N/C
Pin11: DB4 PC0
Pin12: DB5 PC1

Pin13: DB6 PC2
Pin14: DB7 PC3

Pin15:

CATHODE

 GND

Pin16:

ANODE

 5V

LCD Test Program

6

// ------- Preamble -------- //

#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */

#include <avr/io.h> /* Defines pins, ports etc. */

#include <util/delay.h> /* Functions to waste time */

#include "lcd_lib.h" /* LCD Library */

int main(void) {

// -------- Inits --------- //

initialize_LCD(); /* Initialize LCD */

LcdDataWrite('A'); /* Print a few characters for test */

LcdDataWrite('B');

LcdDataWrite(‘C');

// ------ Event loop ------ //

while (1) {

/* Nothing to do */

} /* End event loop */

return (0);

}

Task 1: Extending the Debounce State Machine &
LED Frequency Toggling

 Extend the 3-State Debounce State Machine such that the transition from the
state Pushed Maybe Pushed is not considered a new button push

 This eliminates the possible errors of the 3-State Debounce State Machine

 Use this extended debounce state machine to toggle the LED blinking
frequency (Lab2b: Task1) using the switch

 Each button push should toggle the LED blinking frequency between 2Hz and 8Hz. (So, no
matter the duration of the button push, a single button push should toggle the frequency
only once.)

 Also print the frequency of the current mode on LCD

 Don’t forget you can use the debugging techniques we learned last week to fix your buggy
code.

7

Task 2: Non-Blocking UART Reads

 Modify the LED frequency switching task (Lab2b: Task3) such that the UART reads
are non-blocking. In other words, the LED should keep blinking when the user is
asked if he wants to change the LED frequency.

 Use UART interrupt service routine to receive the characters in a buffer (as shown in the lecture)

 Implement Task_InterpretReadBuffer() function to:

 Properly handle the frequency switching

 Display the current frequency on LCD

8

