
ECE3411 – Fall 2016

Marten van Dijk, Chenglu Jin
Department of Electrical & Computer Engineering

University of Connecticut

Email: {marten.van_dijk, chenglu.jin}@uconn.edu

Debugging General Purpose Digital Input
LCD Interfacing

Lab 2c.

Adopted from Lab 2c slides “General Purpose Digital Input LCD

Interfacing” by Marten van Dijk and Syed Kamran Haider, Fall

2015.

Push Switch Interface

 A push switch provides a logic HIGH or LOW value
to the microcontroller pin to which it is connected

 HIGH: When the switch is not pressed

 LOW: When the switch is pressed

 Figure shows the schematic of the push button
onboard ATmega328p Xplained Mini kit

 The switch is connected to PB7

 We have another push switch on the bread board
which is connected to PB1

 You should use the switch on the bread board
(Switch 2) for debouncing tasks

2

Available Push Switches

3

Switch 1

Switch 2

Task 1: Debugging

1. Download the buggy code (Lab2c_1.c) from Piazza under resources. (Buggy code)

 Correct the syntax errors in it.

2. Read the slide deck about debugging techniques.

 The spec of the buggy code is that we want to use eight LEDs to show the number of button presses,
but if you program your board with this buggy code, you will find that the count keeps incrementing.

 Use simulator or DebugWire to help you fix this code.

4

LCD Interfacing

 We are going to use the LCD in 4-bit mode

 Only 4 data wires are required instead of 8

 LCD pin assignment is as follows:

5

No. Symbol Connections with ATmega328P

1, 3 VSS, VEE GND

2 VCC 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DB0-DB3 Not Connected

11-14 DB4-DB7 PC0-PC3

Pin1: VSS  GND

Pin2: VCC  5V
Pin3: VEE  GND
Pin4: RS  PC4
Pin5: R/W  GND
Pin6: E  PC5

Pin7: DB0  N/C
Pin8: DB1  N/C
Pin9: DB2  N/C
Pin10: DB3  N/C
Pin11: DB4  PC0
Pin12: DB5  PC1

Pin13: DB6  PC2
Pin14: DB7  PC3

Pin15:

CATHODE

 GND

Pin16:

ANODE

 5V

Using LCD Library

 In order to facilitate you, we provide a library file “lcd_lib.c” which defines
some useful basic LCD functions.

 “lcd_lib.h” and “lcd_lib.c” can be downloaded from Piazza under Resources.

 The corresponding prototypes of the functions are declared in “lcd_lib.h” file
which comes along with “lcd_lib.c” file.

 In order to use the function provided by “lcd_lib.c”, you need to:

1. Add “lcd_lib.c” and “lcd_lib.h” files in your Atmel Studio project source files

2. Include “lcd_lib.h” as a header file in your code, i.e. #include "lcd_lib.h"

6

LCD Test Program

7

// ------- Preamble -------- //

#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */

#include <avr/io.h> /* Defines pins, ports etc. */

#include <util/delay.h> /* Functions to waste time */

#include "lcd_lib.h" /* LCD Library */

int main(void) {

// -------- Inits --------- //

initialize_LCD(); /* Initialize LCD */

LcdDataWrite('A'); /* Print a few characters for test */

LcdDataWrite('B');

LcdDataWrite(‘C');

// ------ Event loop ------ //

while (1) {

/* Nothing to do */

} /* End event loop */

return (0);

}

Task 2: Reading a Non-Debounced & Debounced Switch

 Read the input of a push switch (PINB1) and print a
character ‘ * ’ on the LCD for each button push

 Whenever the button connected to PINB1 is pushed, one ‘ * ’ is printed
on LCD. (So, no matter the duration, a single button push should result in
printing only one ‘ * ’.)

 Once a row of LCD is filled with characters ‘ * ’, the
subsequent button pushes should start clearing the LCD

 Most recently printed character is cleared first, and so on until all ‘ * ’
are cleared.

 Implement this task with both non-debounced and
debounced switch.

8

LCD Initialized

LCD Initialized

Printing

Cleaning

