Introduction to C-Programming

Marten van Dijk, Chenglu Jin
Department of Electrical \& Computer Engineering
University of Connecticut
Email: \{marten.van_dijk, chenglu.jin\}@uconn.edu

UCDNN

Adopted from Labla slides "Introduction to CProgramming" by Marten van Dijk and Syed Kamran Haider, Fall 2015.

Prerequisites

- Eclipse development environment (with C Development Tools) installed
- Basic understanding of C Programming

Task 1: Approximate the value of π

- The value of π can be calculated by the following series expansion

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\cdots=\frac{\pi}{4} \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4}
$$

- Task 1 (a): Write a C program that takes a positive (≥ 0) integer n as input and prints the value of π computed up to the $n^{\text {th }}$ term of the above series.
* E.g. if $n=3$ then the program computes $\pi=4 \times\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right)$
- Task 1(b): Modify the program from Task1(a) such that it terminates only when the absolute value of the $n^{\text {th }}$ term becomes less than 10^{-6}
- Implement your own function to compute the absolute value of a double
- Task 1 (c): Modify the program from Task 1 (b) such that it terminates only when the relative error in the π values from two consecutive iterations becomes less than 10^{-8}, i.e., when the absolute value of (pi-last_pi)/last_pi is less than 10^{-8}
- The final output should be the π value from the most recent iteration, i.e. one with the higher value of n.

Task 2: Finding Prime Numbers

- A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.
- E.g. 2, 3, 5, 7, ...
- Task 2: Write a C program which takes an integer as input from the user and prints all the prime numbers (separated by a comma) that are less than the entered number.
"E.g. if the user inputs " 10 " then the program should print " $2,3,5,7$ ".

