
Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2015

Quiz VI
There are 3 questions in this quiz. There are 12 pages in this quiz booklet. Answer each question
according to the instructions given.

You have 45 minutes to answer the questions.

Some questions are harder than others and some questions earn more points than others—you may
want to skim all questions before starting.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Write your name in the space below. Write your initials at the bottom of each page.

THIS IS A CLOSED BOOK, CLOSED NOTES QUIZ.
PLEASE TURN YOUR NETWORK DEVICES OFF.

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

Do not write in the boxes below

1 (x/30) 2 (x/40) 3 (x/30) Total (xx/100)

Name:

Student ID:



ECE 3411 Fall 2015, Quiz Page 2 of 12

1. [30 points]: Below is a program layout with comments explaining what happens during program
execution. Also the meaning of all register initializations is given (there is no need to look into the
ATmega328P data sheet).

You should pay attention to the main body which initializes Timer1, and polls its value before an ADC
measurement in sleep mode starts and after the execution of an ”ADC task” finishes. The difference
of the two values is converted to micro seconds and added to a variable busy. The goal for busy is to
measure the time during which the MCU is doing ”useful” work. The code that is related to busy is
highlighted with vertical bars.

After the program layout below, the first subproblem asks you what is truly measured by busy in the
program and the second subproblem asks you to explain the code which converts the difference to micro
seconds.

... we assume a clock frequency of 20MHz ...

... inclusion of packages ...

... declaration of global variables ...

// ------------------------------------------------- //

ISR (TIMER0_COMPA_vect)

{

/* Update task timer */

if (taskADC_timer >0 ) {--taskADC_timer;}

}

// ------------------------------------------------- //

ISR (ADC_vect)

{

/* Read a 10-bit conversion */

AinLow = (int)ADCL;

Ain = (int)ADCH*256;

Ain = Ain + AinLow;

}

// ------------------------------------------------- //

void taskADC(void)

{

/* Reset task timer */

taskADC_timer = 400;

//Convert Ain into a voltage

voltage = ((1.0*Ain)/1024.0)*5.0;

... Some more computation: sometimes taking more and sometimes taking less time ...

... However, no matter how long taskADC() takes, its execution is always <= 200 ms ...

}

Initials:



ECE 3411 Fall 2015, Quiz Page 3 of 12

int main(void)

{

... initialization variables ...

| // set up timer 1 for 3.2 micro second counter increments

| TCCR1B = 3; //set prescalar to divide by 64

//set up timer 0 such that ISR(TIMER0_COMPA_vect) is called every 1 milli second

OCR0A = 77; //Set the compare reg to 78 time ticks

TIMSK0 = (1<<OCIE0A); //Turn on timer 0 cmp match ISR

TCCR0B = 4; //Set prescalar to divide by 256

TCCR0A = (1<<WGM01); //Turn on clear-on-match

// initialize the ADC

ADMUX = 6; // Select ADC Channel 6

ADCSRA = (1<<ADEN) | (1<<ADIE) + 7 ; // Enable AD converter, enable its interrupt,

// set prescalar (notice that the ADSC bit is

// not set, so no ADC conversion is started)

SMCR = (1<<SM0) ; // Choose ADC sleep mode

sleep_enable();

sei();

while (1)

{

if (taskADC_timer == 0)

{

| // Measure timer 1

| T1poll_before = TCNT1;

//Perform an ADC measurement in sleep mode, and execute taskADC

sleep_cpu();

taskADC();

| //Measure timer 1 again and update busy with the amount of micro seconds that

| //have passed: every TCNT1 to TCNT1+1 increment takes 3.2 micro seconds.

| T1poll_after = TCNT1;

|

| if (T1poll_after > T1poll_before) {

| busy += (T1poll_after - T1poll_before)*3.2;

| } else {

| busy += ( (T1poll_after - T1poll_before) + 65536 ) * 3.2;

| }

} /* end of if (taskADC_timer == 0) */

} /* end of while(1) */

} /* end of main() */

Initials:



ECE 3411 Fall 2015, Quiz Page 4 of 12

The data sheet (section 9.4) writes for the ADC Noise Reduction Mode that ”... the SLEEP instruction
makes the MCU enter ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the ex-
ternal interrupts, 2-wire Serial Interface address match, Timer/Counter2 and the Watchdog to continue
operating (if enabled) ...”. This means that all other hardware modules stop working, in particular, the
other timers/counters stop incrementing.

A. (20 points) Answer with ”never”, ”sometimes”, or ”always”, whether the execution times (mea-
sured in micro seconds) of the following procedures are added into busy variable. Explain your
answers.

(a) ISR(TIMER0 COMPA vect)

(b) ISR(ADC vect)

(c) sleep cpu()

(d) taskADC()

Initials:



ECE 3411 Fall 2015, Quiz Page 5 of 12

B. (10 points) The program assumes that taskADC() always takes ≤ 200 ms. Use this assumption to
explain why the code

if (T1poll_after > T1poll_before) {

busy += ( T1poll_after - T1poll_before ) * 3.2;

} else {

busy += ( (T1poll_after - T1poll_before) + 65536 ) * 3.2;

}

correctly adds to busy the time in micro seconds that passed between the polling of T1poll before
and the polling of T1poll after.

Initials:



ECE 3411 Fall 2015, Quiz Page 6 of 12

2. [40 points]: Given that the clock frequency (clkI/O) of ATmega328P is 16MHz, write a program
that uses watchdog timer in interrupt and reset modes simultaneously. The detailed functionality of the
program is as follows:

(a) Upon the system startup/reset, a LED connected to PB5 lights up for 0.5s and then turns off.

(b) After this, the main function starts blinking the LED at approximately 2Hz.

(c) After 2 seconds, the watchdog interrupt occurs and it keeps blinking the LED at 8Hz until the
system reset occurs.

To simplify the implementation, use delay ms() or delay us() routines inside while(1) loops to
implement the LED blinking function.

The following figure shows the detailed timing of the LED for the desired system. Notice that, after the
watchdog interrupt, it takes another watchdog timeout period for the system reset to occur.

Time(s)10

LED

2 3 4 5 6 7 8 9 10

OFF

ON

Blinking at 8HzBlinking at 2Hz0.5s Blinking at 8HzBlinking at 2Hz0.5s

Implement this system by filling the gaps in the provided code layouts of the subsections A, B and C.
You may use the provided data sheet for your reference.

Initials:



ECE 3411 Fall 2015, Quiz Page 7 of 12

A. Initialization: (15 points)
Complete the function initialize all(void) as instructed below:

/*********** ECE3411 Quiz 6, Task 2 ************/

// Define any variables here if needed

/* Initialization function */

void initialize_all(void)

{

/* Configure the LED pin and implement the functionality of step (a) */

/* Configure the Watchdog timer in Reset & Interrupt mode */

/* Set a prescaler such that watchdog times out after 2 seconds */

/* Any other initializations here if needed */

} /* End of initialize_all() */

Initials:



ECE 3411 Fall 2015, Quiz Page 8 of 12

B. Watchdog timeout ISR Implementation: (10 points)
Write the ISR ISR(WDT vect) to achieve the desired functionality.

/* Watchdog timeout ISR */

ISR(WDT_vect)

{

/* Blink the LED at 8Hz using _delay_ms() or _delay_us() function */

} /* end of Watchdog timeout ISR */

Initials:



ECE 3411 Fall 2015, Quiz Page 9 of 12

C. Main Function Implementation: (15 points)
Write the function main() to complete the system functionality.

/* Main Function */

int main(void)

{

/* Cleanup any aftereffects of Watchdog timeout reset */

initialize_all(); // Initialize everything

sei(); // Enable Global Interrupts

/* Event loop */

while(1)

{

/* Blink the LED at 2Hz using _delay_ms() */

}

} /* End of main() */

Initials:



ECE 3411 Fall 2015, Quiz Page 10 of 12

3. [30 points]: Table 1 shows the characteristics of four tasks that need to be scheduled on the MCU.

“Ready Time” indicates when the corresponding task is ready to execute. In this example, all the tasks
are ready and want to execute as soon as the system starts, i.e. at time 0. “Required CPU Time”
indicates how many time units are needed for the task to finish.

Table 1: Task Specifications

Task Ready Time Required CPU Time
A 0 10
B 0 1
C 0 3
D 0 4

The following figure shows an example of First Come First Serve scheduling of these tasks assuming
the order A, B, C, and then D.

Time

Task A

5 10 15 20

Task B

Task C

0

Task D

The following table shows the completion times of the tasks and their corresponding wait times (i.e.
while the task is suspended and waiting for the CPU) under First Come First Serve scheduling scheme.

Table 2: Analysis under First Come First Serve Scheduling

Task Ready Time Required CPU Time Completion Time Wait Time
A 0 10 10 0
B 0 1 11 10
C 0 3 14 11
D 0 4 18 14

Average 13.25 8.75

Initials:



ECE 3411 Fall 2015, Quiz Page 11 of 12

A. Round Robin Scheduling: (15 points)
Plot how the tasks A, B, C, and D will be scheduled on the CPU under Round Robin Scheduling with
a time slice of 1 time unit. I.e. assuming an order of A, B, C, and D; the tasks take turns for the CPU
and each task gets the CPU for 1 time unit in each turn until the task finishes. Assume that no time is
wasted in context switching between the tasks.

Time

Task A

5 10 15 20

Task B

Task C

0

Task D

Use the plot above to complete the following table.

Table 3: Analysis under Round Robin Scheduling

Task Ready Time Required CPU Time Completion Time Wait Time
A 0 10
B 0 1
C 0 3
D 0 4

Average

Initials:



ECE 3411 Fall 2015, Quiz Page 12 of 12

B. Shortest Remaining Time First Scheduling: (15 points)
Plot how the tasks A, B, C, and D will be scheduled on the CPU under Shortest Remaining Time First
Scheduling. I.e. whichever task needs the shortest amount of CPU time to finish gets the CPU first.
Once this task is finished, another task that needs the smallest CPU time is executed. Assume that no
time is wasted in scheduling a new task once a task finishes.

Time

Task A

5 10 15 20

Task B

Task C

0

Task D

Use the plot above to complete the following table.

Table 4: Analysis under Shortest Remaining Time First Scheduling

Task Ready Time Required CPU Time Completion Time Wait Time
A 0 10
B 0 1
C 0 3
D 0 4

Average

End of Quiz
Please double check that you wrote your name on the front of the quiz.

Initials:


