
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Advanced topics in Embedded Systems Design

Lecture 7b.

Some of these slides are extracted or copied from TTK4155:

“Industrial & Embedded System Design” offered at NTNU, Norway.

Basic Computer Components

2

Processor Bus

Main Memory

I/O Proc.

I/O Proc.

I/O

I/O

I/O

Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.

 Industrial Buses
 VMEbus

 CompactPCI

 PC/104

 …

 Serial Local Buses
 SPI

 MicroWire

 I2C

 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART

 RS-232C

 RS-422

 USB

3

 Networks (N to M)

 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication

 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee

Serial synchronous interfaces

 Local serial interconnection of microcontrollers and peripheral circuits/functions

 Required features:

 Low complexity

 Low to medium data rate

 Small physical footprint/few pins

 Short distances

 Low cost

 Most MCUs have built-in peripheral units for communicating with external circuits,
e.g. ATmegaAVR (SPI and TWI (I2C))

 Great abundance of different types of peripheral circuits that implements
synchronous serial interfaces (Flash, EEPROM, AD, DA, RTC, Display drivers, sensors
etc.)

4

SPI: Serial Peripheral Interface

 Synchronous Data Transfer

 Master/Slave configuration

 4-Line Bus

 Full Duplex operation

5

SCLK

MOSI

SS

MISO

SCLK

MOSI

SS

MISO

SPI Master SPI Slave

SPI Master with Multiple Slaves

6

SPI Frame Transfer

7

MicroWire (𝜇Wire)

 Essentially a subset of SPI

 SPI mode 0 (CPOL, CPHA) = (0, 0)

 Often found in half duplex “three-wire mode”

 Common bi-directional serial data line only three wires needed (SIO, SCLK, CS)

 Used in e.g. RTCs and serial EEPROMs

8

I2C: Inter Integrated Circuit bus
 Also known as Two Wire Interface (TWI)

 Allows up to 128 different devices to be connected using only two bi-directional bus lines,
one for clock (SCL) and one for data (SDA).

 All devices connected to the bus have individual addresses.

9

I2C START and STOP Conditions

 START and STOP conditions are signaled by changing the level of the SDA line when
the SCL line is high.

 When a new START condition is issued between a START and STOP condition, this is
referred to as a REPEATED START condition

10

I2C Address Packet Format

 All address packets transmitted on the TWI bus are 9 bits long:

 7 address bits, one READ/WRITE control bit and an acknowledge bit.

 When a Slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle.

 The Master can then transmit a STOP condition, or a REPEATED START condition to
initiate a new transmission.

11

I2C Data Packet Format

 All data packets transmitted on the TWI bus are 9 bits long:

 One data byte and one acknowledge bit.

 An Acknowledge (ACK) is signaled by the Receiver pulling the SDA line low during
the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is signaled.

12

I2C Bus Arbitration
 Arbitration is carried out by all masters continuously monitoring the SDA line after outputting

data.

 If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration.

13

Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.

 Industrial Buses
 VMEbus

 CompactPCI

 PC/104

 …

 Serial Local Buses
 SPI

 MicroWire

 I2C

 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART

 RS-232C

 RS-422

 USB

14

 Networks (N to M)

 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication

 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee

CAN – Controller Area Network

Industrial network protocol (automotive fieldbus (Bosch))

 CAN is based on a message oriented broadcast communication mechanism.

 Well suited for interconnection of distributed embedded computers in industrial
environments.

 Robust against sporadic and persistent disturbances.

 CAN messages are identified by using a message identifier.
 Message identifier has to be unique within the whole network

 Message identifier defines not only the content but also the priority of the message.
 The identifier with the lowest binary number has the highest priority.

 Acceptable performance for monitoring and control applications:
 1 Mbps@40 meters

 40 kbps@1000 meters

15

CAN Frame Format & Types
Information transmitted in frames of different formats and types

Two frame formats:

 Standard – 11 bits message identifier (CAN2.0A)

 Extended – 29 bits message identifier (CAN2.0B)

Four frame types:

 DATA FRAME

 REMOTE FRAME

 ERROR FRAME

 OVERLOAD FRAME

Messages are identified by a unique number (message identifier)

16

CAN Standard Frame Format

17

SOF – Start of Frame,
RTR – Remote Transmission Request, IDE – Identifier Extension Bit
SRR – Substitute Remote Request bit, DLC – Data Length Code

CAN Extended Frame Format

18

SOF – Start of Frame,
RTR – Remote Transmission Request, IDE – Identifier Extension Bit
SRR – Substitute Remote Request bit, DLC – Data Length Code

CAN Bus Arbitration

 The CAN protocol handles bus accesses according to the concept called
“Carrier Sense Multiple Access with Arbitration on Message Priority”.

 During transmission, arbitration on the CAN bus can be lost to a competing device
with a higher priority CAN Identifier, i.e. identifier with lower value.

19

Error Detection in CAN

The CAN protocol signals any errors immediately as they occur.

Following are some error detection mechanisms implemented at the CAN message
level:

 Cyclic Redundancy Check (CRC)

 Frame Check:
This mechanism verifies the structure of the transmitted frame by checking the bit
fields against the fixed format and the frame size.

 ACK Errors:
Frames received are acknowledged by all receivers through positive
acknowledgement. If no acknowledgement is received by the transmitter of the
message an ACK error is indicated.

20

Basic Computer Components

21

Processor Bus

Main Memory

I/O Proc.

I/O Proc.

I/O

I/O

I/O

Servo Motor

 A Servo is a small device that has an output shaft that can
be positioned to specific angular positions based on input
PWM signal.

 The servo motor has a potentiometer that is connected to
the output shaft and allows the control circuitry to monitor
the current angle of the servo motor.

 A normal servo is used to control an angular motion of
between 0 and 180 degrees.

22
Ref: http://lizarum.com/assignments/physical_computing/2008/servo.html

http://lizarum.com/assignments/physical_computing/2008/servo.html

Servo Motor Applications

 Servos are typically used to control elevators,
rudders and ailerons.

23

Image Refs: http://www.greatplanes.com/discontinued/gpma1414.html

http://www.rc-airplane-world.com/rc-airplane-controls.html

http://www.greatplanes.com/discontinued/gpma1414.html
http://www.rc-airplane-world.com/rc-airplane-controls.html

Controlling the servo

 The servo is controlled using a 50 Hz PWM signal (i.e. signal period = 20 ms)

 The angle of the servo is determined by the pulse width (i.e. the duty cycle)

 1.5ms corresponds to the center position.

 By varying the pulse width, we can control the angle

 The pulse width must never be outside the range 0.9 to 2.1ms

24

Connecting the servo

 Typically the servo connectors have
3 wires which should be connected
as follows:

 Red VCC (+5V)

 Black GND (0V)

 Yellow PWM signal

25

