
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Advanced topics in Embedded Systems Design

Lecture 7a.

Some of these slides are extracted or copied from TTK4155:

“Industrial & Embedded System Design” offered at NTNU, Norway.

Basic Computer Components

2

Processor Bus

Main Memory

I/O Proc.

I/O Proc.

I/O

I/O

I/O

Pipelining in Real life

3

Task

Order

A

B

C

Time

Task

Order

A

B

C

Time

Non-Pipelined

Pipelined

Instruction Pipelining

 Method for increasing the instruction throughput of the processor [IPS]

 Instruction execution may be partitioned into a fixed number of sequential steps,
e.g. (ARM7):

 Fetch (instruction from memory)

 Decode (opcode and operands)

 Execute…

 Stages may be executed in parallel, e.g. the CPU works with several instructions at
the same time
 Increased Throughput

 Some instructions and code sequences may reduce the performance gain (pipeline
stalls) because of dependencies
 Developing techniques to avoid stalls is very “hot” in current microprocessor
research

4

3-Stage Pipeline

5

Basic Computer Components

6

Processor Bus

Main Memory

I/O Proc.

I/O Proc.

I/O

I/O

I/O

Main Memory

 Stores instructions and data for the processor

 Connected to the processor via the memory bus

Two main types:

 Volatile, RAM (random bytewise read and write)

 SRAM

 DRAM

 Non-volatile, ROM (read (and sometimes write…))

 OTPROM

 EPROM

 EEPROM

 FLASH

 FRAM

7

Memory Architectures

 Von Neumann machine/architecture

 Memory viewed at a long continuous column of memory cells

 No principal difference between data and instructions

 No difference between different data types

 Common physical storage for instructions and data

 Harvard architecture

 Principal difference between data and instructions

 Physically separate memories and buses for data and instructions

 May have different word length for data and instructions

 Hybrid architecture

 Harvard architecture between CPU and cache memory

 In case of cache-miss: Von Neumann between CPU and main memory

8

Memory Architectures

9

Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.

 Industrial Buses
 VMEbus

 CompactPCI

 PC/104

 …

 Serial Local Buses
 SPI

 MicroWire

 I2C

 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART

 RS-232C

 RS-422

 USB

10

 Networks (N to M)

 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication

 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee

Parallel Bus Interfaces

 A bus is defined as a group of signal lines that shares a
common function and that connects the processor to the
memory and I/O devices in the system

 The “three bus” system is the most common parallel bus
architecture:

 Address

 Data

 Control

11

Address Space

 The range of memory locations addressable by a processor.

 Typically reflected by the width of the address bus

 16 bit  216 = 64 KB

 32 bit  232 = 4 GB

 Linear (flat) address space

 One contiguous block of bytes (words)

 Logical address = physical address

 Paged, Segmented

 Organized in pages and/or segments:offsets (logical addresses)

 Conversion between logical & physical addresses needed

12

Address space of AVR ATmega162

13

Interfacing External SRAM to ATmega162

The External Memory interface consists of:

 AD7:0  Multiplexed low-order address bus and data bus

 A15:8  High-order address bus (configurable number of
bits)

 ALE  Address latch enable

 RD  Read strobe

 WR  Write strobe

14

Interfacing External SRAM to ATmega162

The External Memory interface consists of:

 AD7:0  Multiplexed low-order address bus and data bus

 A15:8  High-order address bus (configurable number of
bits)

 ALE  Address latch enable

 RD  Read strobe

 WR  Write strobe

15

Processor/Bus cycle ATmega162 (without wait states)

16

Wait states

Problem: The processor is normally much faster than the peripheral devices
connected to the bus interface

 Peripheral devices may not be able to respond to processor requests within
the next clock state

 Data on the bus may be invalid when they are read by the processor

Solution: Wait states

 Synchronous processors: Injects one or more extra clock cycles into the bus
cycle.

 Asynchronous processors: Delayed assertion of the DTACK signal.

17

Processor/Bus cycles ATmega162 – 2 wait states

18Wait States

Address Decoding

 Address space is divided among
several devices.

 Address Decoding Logic is
configured according to the
address space mapping.

 Address Decoding logic enables
device(s) based on the address
requested by the processor.

19

Processor

Address Bus

CS

CS

CS

Data Bus

A
d

d
re

ss D
e
co

d
e
 Lo

g
ic

Devices

Example: Memory Map & Address Decoding

Design an AVR-based computer that includes four devices in its address space:

 One SRAM 32K, for data storage

 Digital outputs for driving 24 LEDs using three 8-bit latches

Make a memory map and address decoder for the system (use partial decoding)

20

Selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 0000 0000 0000 0000

0001 1111 1111 1111

Latch0 0x2000 – 0x3FFF 0010 0000 0000 0000

0011 1111 1111 1111

Latch1 0x4000 – 0x5FFF 0100 0000 0000 0000

0101 1111 1111 1111

Latch2 0x6000 – 0x7FFF 0110 0000 0000 0000

0111 1111 1111 1111

SRAM 0x8000 – 0xFFFF 1000 0000 0000 0000

1111 1111 1111 1111

21

Internal

Unused

Latch0

Latch1

Latch2

SRAM

0x0000

0x04FF

0x2000

0x4000

0x6000

0x8000

0xFFFF

Address Decoding of selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 000x xxxx xxxx xxxx

Latch0 0x2000 – 0x3FFF 001x xxxx xxxx xxxx

Latch1 0x4000 – 0x5FFF 010x xxxx xxxx xxxx

Latch2 0x6000 – 0x7FFF 011x xxxx xxxx xxxx

SRAM 0x8000 – 0xFFFF 1xxx xxxx xxxx xxxx

22

Internal

Unused

Latch0

Latch1

Latch2

SRAM

0x0000

0x04FF

0x2000

0x4000

0x6000

0x8000

0xFFFF𝐴15

𝐴13

𝐴14
𝐿𝑎𝑡𝑐ℎ0

𝐿𝑎𝑡𝑐ℎ1

𝐿𝑎𝑡𝑐ℎ2

𝑆𝑅𝐴𝑀

Bus Multiplexing & Address Decoding

Atmega

162

Latch0

LE

Latch1
LE

Latch2

LE
A

d
d

re
ss D

e
co

d
e
 Lo

g
ic

Address

Latch

Multiplexed Bus

SRAM

CS

Data Bus D[7:0]

Address Bus A[15:0]

A[7:0]

A[15:8]

A
[1

5
:1

3
]

AD[7:0]

A[15:8]

Connecting the LED Latches

24

D[0:7]

Latch0

Memory Management

 Translation between logical and physical memory space.

 Memory Management Unit (MMU) handles the address translation (and other jobs).

25

Memory Management

 Physical memory > logical memory

 Banked memory  Dividing the physical memory into N partitions (banks) where the size of each
partition is equal to (or lesser than) the processor’s logical address space

 Physical memory < Logical memory

 Virtual memory  Exploits the entire logical memory space of the processor. On-demand loading of
data blocks to the physical memory from secondary storage (paging).

 Protection of memory regions

 Monitor the address bus and intercept in case of unauthorized access to critical memory regions (OS,
I/O space, interrupt tables etc.) (MPU)

 Isolation of tasks/threads

 Prevent unauthorized access between the memory spaces of threads in a multitasking system

26

Example: Banked memory

In some cases it will be necessary to expand the physical memory beyond the logical
memory space of the processor, e.g. 512Kb memory on a 16 bit address buss.

 Solution: Map a data latch into the processor’s address room and use it to keep the
4 MSB of the 19 bit physical address
16 memory banks of 32 Kb = 512 Kb available to the application
 Needs software control

27

