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Basic Computer Components
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Pipelining in Real life
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Instruction Pipelining

 Method for increasing the instruction throughput of the processor [IPS] 

 Instruction execution may be partitioned into a fixed number of sequential steps, 
e.g. (ARM7): 

 Fetch (instruction from memory) 

 Decode (opcode and operands) 

 Execute… 

 Stages may be executed in parallel, e.g. the CPU works with several instructions at 
the same time 
 Increased Throughput

 Some instructions and code sequences may reduce the performance gain (pipeline 
stalls) because of dependencies 
 Developing techniques to avoid stalls is very “hot” in current microprocessor 
research
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3-Stage Pipeline

5



Basic Computer Components
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Main Memory

 Stores instructions and data for the processor 

 Connected to the processor via the memory bus 

Two main types: 

 Volatile, RAM (random bytewise read and write)

 SRAM 

 DRAM

 Non-volatile, ROM (read (and sometimes write…)) 

 OTPROM 

 EPROM 

 EEPROM 

 FLASH 

 FRAM
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Memory Architectures

 Von Neumann machine/architecture 

 Memory viewed at a long continuous column of memory cells 

 No principal difference between data and instructions 

 No difference between different data types 

 Common physical storage for instructions and data 

 Harvard architecture 

 Principal difference between data and instructions 

 Physically separate memories and buses for data and instructions 

 May have different word length for data and instructions 

 Hybrid architecture 

 Harvard architecture between CPU and cache memory 

 In case of cache-miss: Von Neumann between CPU and main memory
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Memory Architectures
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Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.

 Industrial Buses
 VMEbus

 CompactPCI

 PC/104

 …

 Serial Local Buses
 SPI

 MicroWire

 I2C

 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART

 RS-232C

 RS-422

 USB
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 Networks (N to M)

 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication

 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee



Parallel Bus Interfaces

 A bus is defined as a group of signal lines that shares a 
common function and that connects the processor to the 
memory and I/O devices in the system 

 The “three bus” system is the most common parallel bus 
architecture: 

 Address 

 Data 

 Control 
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Address Space

 The range of memory locations addressable by a processor.

 Typically reflected by the width of the address bus 

 16 bit  216 = 64 KB 

 32 bit  232 = 4 GB 

 Linear (flat) address space 

 One contiguous block of bytes (words) 

 Logical address = physical address 

 Paged, Segmented 

 Organized in pages and/or segments:offsets (logical addresses) 

 Conversion between logical & physical addresses needed
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Address space of  AVR ATmega162

13



Interfacing External SRAM to ATmega162

The External Memory interface consists of:

 AD7:0  Multiplexed low-order address bus and data bus

 A15:8  High-order address bus (configurable number of 
bits)

 ALE  Address latch enable

 RD  Read strobe

 WR  Write strobe
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Interfacing External SRAM to ATmega162

The External Memory interface consists of:

 AD7:0  Multiplexed low-order address bus and data bus

 A15:8  High-order address bus (configurable number of 
bits)

 ALE  Address latch enable

 RD  Read strobe

 WR  Write strobe
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Processor/Bus cycle ATmega162 (without wait states)
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Wait states

Problem: The processor is normally much faster than the peripheral devices 
connected to the bus interface

 Peripheral devices may not be able to respond to processor requests within 
the next clock state 

 Data on the bus may be invalid when they are read by the processor 

Solution: Wait states

 Synchronous processors: Injects one or more extra clock cycles into the bus 
cycle.

 Asynchronous processors: Delayed assertion of the DTACK signal.
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Processor/Bus cycles ATmega162 – 2 wait states

18Wait States



Address Decoding

 Address space is divided among 
several devices.

 Address Decoding Logic is 
configured according to the 
address space mapping.

 Address Decoding logic enables 
device(s) based on the address 
requested by the processor.
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Example: Memory Map & Address Decoding

Design an AVR-based computer that includes four devices in its address space: 

 One SRAM 32K, for data storage 

 Digital outputs for driving 24 LEDs using three 8-bit latches 

Make a memory map and address decoder for the system (use partial decoding)
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Selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 0000 0000 0000 0000

0001 1111 1111 1111

Latch0 0x2000 – 0x3FFF 0010 0000 0000 0000 

0011 1111 1111 1111

Latch1 0x4000 – 0x5FFF 0100 0000 0000 0000 

0101 1111 1111 1111

Latch2 0x6000 – 0x7FFF 0110 0000 0000 0000 

0111 1111 1111 1111

SRAM 0x8000 – 0xFFFF 1000 0000 0000 0000

1111 1111 1111 1111
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Address Decoding of  selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 000x xxxx xxxx xxxx

Latch0 0x2000 – 0x3FFF 001x xxxx xxxx xxxx

Latch1 0x4000 – 0x5FFF 010x xxxx xxxx xxxx

Latch2 0x6000 – 0x7FFF 011x xxxx xxxx xxxx

SRAM 0x8000 – 0xFFFF 1xxx xxxx xxxx xxxx
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Bus Multiplexing & Address Decoding
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Connecting the LED Latches
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Memory Management

 Translation between logical and physical memory space.

 Memory Management Unit (MMU) handles the address translation (and other jobs).
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Memory Management

 Physical memory > logical memory 

 Banked memory  Dividing the physical memory into N partitions (banks) where the size of each 
partition is equal to (or lesser than) the processor’s logical address space 

 Physical memory < Logical memory 

 Virtual memory  Exploits the entire logical memory space of the processor. On-demand loading of 
data blocks to the physical memory from secondary storage (paging). 

 Protection of memory regions 

 Monitor the address bus and intercept in case of unauthorized access to critical memory regions (OS, 
I/O space, interrupt tables etc.) (MPU) 

 Isolation of tasks/threads

 Prevent unauthorized access between the memory spaces of threads in a multitasking system 

26



Example: Banked memory

In some cases it will be necessary to expand the physical memory beyond the logical 
memory space of the processor, e.g. 512Kb memory on a 16 bit address buss. 

 Solution: Map a data latch into the processor’s address room and use it to keep the 
4 MSB of the 19 bit physical address 
16 memory banks of 32 Kb = 512 Kb available to the application 
 Needs software control 
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