
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Real Time Operating System:
Inter-Process Communication (IPC)

Lecture 6c.

These slides are extracted or copied from MIT 16.07 (Smith) and

“Embedded Software Architecture”, Cook & Freudenberg, 2008.

Task State Diagram

 A task/process goes through several states during its life in a multitasking system

 Tasks are moved from one state to another in response to the stimuli marked on the
arrows

2

Blocked Ready

Running

Waiting for I/O

or other resource

Ready to be

executed

I/O complete

Is an interrupt: The

CPU stops what it is

doing and marks the

blocked task as ready

I/O request
Scheduler

Timer

interrupt

Wait Queue Ready Queue

• Any tasks that are ready to run sit on the ready queue.

This queue may be prioritized so the most important task

runs next.

• When the scheduler decides the current task has had

enough time on the CPU, either because it finished or its

time slice is up, the Running task is moved to the ready

queue. Then the first task on the ready queue is selected

for Running.

• If the Running task needs I/O or needs a resource that is

currently unavailable, it is put on the blocked queue.

When its resource becomes available, it goes back to

Ready.

Inter-Task Communication

 Tasks don’t work in isolation from each other. They often need to share data or
modify it in series.

 Since only one task can be running at one time, there must be mechanisms for tasks
to communicate with one another

 A task is reading data from a sensor at 15 hz. It stores 1024 bytes of data and then needs to signal
a processing task to take and process the data so it has room to write more.

 A task is determining the state of a system- i.e. Normal Mode, Urgent Mode, Sleeping, Disabled. It
needs to inform all other tasks in the system of a change in status.

 A user is communicating to another user across a network. The network receive task has to deliver
messages to the terminal program, and the terminal program has to deliver messages to the network
transmit task.

3

Inter-Task Communication
 Regular operating systems have many options for passing messages between processes, but most

involve significant overhead and aren’t deterministic.
 Pipes (is a connection between two processes, such that the standard output from one process becomes the standard

input of another process; the system temporarily holds the piped information until it is read by the receiving process),

 message queues (asynchronous communications protocol, meaning that the sender and receiver of the message do not
need to interact with the message queue at the same time; messages placed onto the queue are stored until the
recipient retrieves them),

 Semaphores (is a variable or abstract data type that is used for controlling access, by multiple processes, to a
common resource in a concurrent system such as a multiprogramming operating system),

 Remote Procedure Calls (is a protocol that one program can use to request a service from a program located in
another computer in a network without having to understand network details),

 Sockets (is one endpoint of a two-way communication link between two programs running on the network, a socket is
bound to a port number so that the TCP layer can identify the application that data is destined to be sent to, an
endpoint is a combination of an IP address and a port number),

 Datagrams (a self-contained, independent entity of data carrying sufficient information to be routed from the source
to the destination computer without reliance on earlier exchanges between this source and destination computer and
the transporting network), etc.

 In a RTOS, tasks generally have direct access to a common memory space, and the fastest way to
share data is by sharing memory.
 In ordinary OS’s, tasks are usually prevented from accessing another task’s memory, and for good reason.

4

Shared Memory: Global Variables used as Flags

 Different tasks are spawned and each, when finished, increments a variable called finished;
once finished is equal to the total number of tasks spawned, the computation is done

5

int main(void)

{

initialize_all();

Initialize_kernel(3, SCHEDULING_QUANTUM);

/* Register Tasks */

/* void RegisterTask(double task_period, void* task_function) */

/* Arguments:

task_period: Task Period (in secs). 0 for non-periodic tasks

task_function: Pointer to the task's function

*/

finished = 0;

RegisterTask(0, (void*) &task1); //task1 increments finished when done

RegisterTask(0, (void*) &task2); //task2 increments finished when done

RegisterTask(0, (void*) &task3); //task3 increments finished when done

/* Function to starts the tasks. This gives control to the scheduler. */

Run_tasks(); //In our kernel this means that all tasks are being executed and the processor will not get beyond this instruction.

//In more advanced kernels, the tasks are spawned at the background and the next instruction in the main loop is executed.

while (finished != 3) ;

printf(“Done”);

}

Shared Memory: Mailboxes

 Post() - write operation- puts data in mailbox

 Pend() - read operation- gets data from mailbox

 Just like using a buffer or shared memory, except:

 If no data is available, pend() task is suspended

 Mutual exclusion built in: if somebody is posting, pend() has to wait.

 No processor time is wasted on polling the mailbox, to see if anything is there yet.

 Pend might have a timeout, just in case

6

Shared Memory: Buffering Data

 If you have a producer and a consumer that work at different rates, a buffer can
keep things running smoothly

 As long as buffer isn’t full, producer can write

 As long as buffer isn’t empty, consumer can read

7

Shared Memory: Corruption

 Shared memory can be as simple as a global variable in a C program, or an OS-
supplied block of common memory.

 In a single-task program, you know only one function will try to access the variable
at a time.

 With two tasks updating the same piece of memory, conflicts arise:
 E.g., consider the instruction x = x – a;

 Get stored variable x

 Subtract a (assume it is already stored in one of the 32 registers)

 Replace x with the result x-a

 One task may interrupt another at any arbitrary point:
 One C instruction is represented by several assembly instructions; an interrupt may happen in the

middle

 A hardware event causing an interrupt will finish 4 assembly instructions (enough to finish a C
instruction such as x = x-a; but not sufficient to finish a more complex composed line of C code)

 A RTOS orders time slices at start and end points at arbitrary spots if not explicitly instructed

8

Shared Memory: Corruption

 We need to be careful in multi-tasked systems, especially when modifying shared
data.

 We want to make sure that in certain critical sections of the code, no two processes
have access to data at the same time.

 If we set a flag (memory is busy, please hold), we can run into the same problem as
the previous example:
 Suppose flag = 0

 Task1 executes while (flag !=0);

 RTOS switches context to Task 2

 Task2 executes while (flag !=0);

 Task2 executes its next instruction which sets flag = 1;

 RTOS switches context to Task1

 Task1 executes its next instruction (after the while loop) which sets flag = 1;

 Both tasks think they have exclusive ownership over the memory corresponding to flag … and start
accessing the memory at the “same time” (the RTOS context switches Task1 and Task2 in and out).

9

Mutual Exclusion: Atomic Operations

 An operating system that supports multiple tasks will also support atomic
semaphores.

 The names of the functions that implement semaphores vary from system to system

 test-set/release

 lock/unlock

 wait/signal

 P()/V()

 The idea: You check a “lock” before entering a critical section.

 If it is set, you wait.

 If it isn’t, you go through the lock and unset it on your way out.

 The word atomic means checking the lock and setting it only takes one logical
operation which cannot be interrupted

 See previous lecture on how a pin interrupt can be used to write an atomic procedure

10

Semaphores

11

…

void SensedDataUpdate()

{

lock(sensed_data);

update(curr_sensed_data);

unlock(sensed_data);

}

…

void SensedDataTransmit()

{

lock(transmitter);

…

lock(sensed_data);

transmit(curr_sensed_data);

unlock(sensed_data);

unlock(transmitter);

}

Semaphores: Deadlock

12

void ProcessSensedData()

{

lock(sensed_data);

edit(curr_sensed_data);

lock(transmitter);

… deadlock …

transmit(edited_sensed_data);

unlock(transmitter);

unlock(sensed_data);

}

…

void SensedDataTransmit()

{

lock(transmitter);

lock(sensed_data);

…

… deadlock …

transmit(curr_sensed_data);

unlock(sensed_data);

unlock(transmitter);

}

Waiting on transmitter

Waiting on sensed_data

Deadlock: Detection and Avoidance
 Cannot always be found in testing

 Four conditions necessary
 Area of mutual exclusion

 Circular wait

 Hold and wait

 No preemption

 Some well-known solutions exist
 Make all resources sharable

 Impose ordering on resources, and enforce it (if a task holds a lock on a resource x and y<x, the task
cannot ask for a lock on resource y)

 Force a task to get all of its resources at the same time or wait on all of them (a global lock approach)

 Allow priority preemption

 Not recommended:
 Avoidance: Only write single-task programs or programs that don’t use shared memory

 Ostrich method: Ignore the problem completely, assuming it won’t happen often, or at least not often
enough for your customers to sue you

 Brute force: Disable interrupts completely during “critical section” operations

13

Lessons

 Buffering data can smooth out the interaction of a producer that generates data at
one rate and a consumer that eats at another.

 Inter-task communication can be tricky- if your operating system supports high-level
communication protocols, and they are appropriate for your task, use them!

 If you use a flag to indicate a resource is being used, understand why checking and
setting the flag needs to be atomic.

14

Another Example

15

int ADC_channel[3];

// The following is called in an actual ISR

void ISR_ReadData(void)

{

Read ADC_channel[0];

Read ADC_channel[1];

Read ADC_channel[2];

}

int delta, offset;

int main(void)

{

…

while(1)

{

…

delta = ADC_channel[0]-ADC_channel[1];

offset = delta*ADC_channel[2];

…

}

}

What if an interrupt happens between

the calculation of delta and offset?

Even the calculation of delta can be

interrupted!

Assembly

16

Assembly

 Assembly code instructions are atomic

 temp = temp – offset; is translated as

17

A First Solution

 Just disable/enable all interrupts …

 But interrupts are there for a reason
and have the highest priority …

 Use disable/enable sparingly … good
programming avoids them at all cost

18

while(1)

{

…

disable();

delta = ADC_channel[0]-ADC_channel[1];

offset = delta*ADC_channel[2];

enable();

…

}

Another Solution?

19

int ADC_channel[3];

// The following is called in an actual ISR

void ISR_ReadData(void)

{

GlobalLock();

Read ADC_channel[0];

Read ADC_channel[1];

Read ADC_channel[2];

GlobalUnlock();

}

int delta, offset;

int main(void)

{

while(1)

{

GlobalLock();

delta = ADC_channel[0]-ADC_channel[1];

offset = delta*ADC_channel[2];

GlobalUnlock();

}

}

Leads to deadlock! HW events that

cause the ISR to execute can happen

anywhere!

Semaphores: Priority Inversion

20

Priority Inheritance

21

Priority Ceiling Protocol

 Each task is assigned a static priority, and each semaphore, or “resource” is
assigned a “ceiling” priority greater than or equal to the maximum priority of all
the tasks that use it.

 At run time, a task assumes a priority equal to the static priority or the ceiling value
of its resource, whichever is larger:

 if a task requires a resource, the priority of the task will be raised to the ceiling priority of the
resource;

 when the task releases the resource, the priority is reset.

 It can be shown that this scheme minimizes the time that the highest priority task will
be blocked, and eliminates the potential of deadlock.

22

Priority Ceiling Protocol

23

