ECE3411 — Fall 2015
Lecture 6b.

Real Time Operating System: Scheduling Policies

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

With the help of:

UEUNN www.wikipedia.org

www.freertos.org

http://www.wikipedia.org/
http://www.freertos.org/

Operating System Fundamentals

= Multitasking
= Scheduling
= Context Switching

" Preemption

Multitasking

If an operating system can execute multiple tasks in seemingly concurrent manner, it is said to
be multitasking.

= A conventional processor can only execute a single task at a time.

* However, rapidly switching between tasks can make it appear as if each task is executing
concurrently.

All available tasks appear to be executing ...

Task 1 Executing

Task 2 Executing

lask 3 Executing

[11 12 — ~ Time — In >

... but only one task is ever executing at any time.

Task 1 Executing s ._. — __..
Task 2 Executing L — JE— R
lask 3 Executing —_— f— d—

[11 12 — Time ~ In >

Scheduling (1)

* The scheduler is the part of the OS kernel responsible for deciding which task
should be executing at any particular time.

" The scheduling policy is the algorithm used by the scheduler to decide which task to

execute at any point in time.
q @K : ©
Task 1 Executing
Time ‘ | >

Task 2 Executing

Task 3 Executin

Scheduling (2)

Referring to the figure on the last slide:
Task 1 is executing.
The kernel suspends (swaps out) task 1 ...
and resumes task 2.
While task 2 is executing, it locks a processor peripheral for its own exclusive access.
The kernel suspends task 2 ...
... and resumes task 3.

Task 3 tries to access the same processor peripheral, finding it locked. Task 3 cannot
continue so suspends itself at (7).

At (8) the kernel resumes task 1.
The next time task 2 is executing (?) it finishes with the processor peripheral and unlocks it.

The next time task 3 is executing (10) it finds it can now access the processor peripheral
and this time executes until suspended by the kernel.

Execution Context

= As a task executes it utilizes the Ll
i Execution Context
processor registers and accesses RAM. |Execution Lonte

|
' |
| Stack |
. General Purpose

|
* These resources together comprise the | Registers |
task execution context. In particular; ' [Rro |
|
* The Program Counter (PC) : R1 |
|
= The Status Register (SREG) : |
. |
" Processor’s general purpose registers (RO - R31) ' R25 Status |
) ' SREG |
* The Stack Pointer I TR26[XL] I
I Program Counter |
: R27[XH] T |
|

|
| R28[YL] Stack Pointer :
: R29[YH] SPH || spPL " |
|
| [R30izL] OxIt_ | |
|
| [Rat(zH] [oxee ||
|

Context Switching

= |t is essential that upon resumption from a
suspended state, a task has a context
identical to that immediately prior to its
suspension.

* The operating system kernel saves the
context of a task as it is suspended.

= The process of saving the context of a task
being suspended and restoring the context
of a task being resumed is called context
switching.

|Before Suspension

CPU

Stack Ptr

Data
Memory

0
1

Prog Counter

Program Memory

LDI Reg1, OxFA

Reg1| FA LDI Reg2, OxE2 |
Reg2 E2 - ADD Reg1, Reg2
Reg3| 00

The previous instructions have already set the registers used
by the ADD. When the task is resumed the ADD instruction
will be the first instruction to execute. The task will not know if
a different task modified Reg1 or Reg2 in the interim.

Preemption

= A context switch when the interrupted task is suspended without the task suspending
itself voluntarily is called Preemptive context switch.

* FreeRTOS implements context switching in Timer1 ISR.

= Upon a context switch, the ISR effectively interrupts one task but returns to another.

vControlTask
Increment tick count

If(Tick increment readied task)

{

|

|

vKeyHandlerTask :

| |
: Switch execution context to readied task.

Time :

N\

|

|

|

Idle Task

}

Return from ISR

Scheduling Policies

Static Scheduling Schemes

® Round-robin scheduling

® Rate-monotonic scheduling

* Deadline-monotonic scheduling

= Shortest Remaining Time First

Dynamic Scheduling Schemes
= Earliest deadline first scheduling

= Least slack time scheduling

Round-robin scheduling

® Round-robin (RR) is scheduling that assigns time slices to each process in equal
portions and in circular order.

= All processes are handled without priority.

. Process . Time
(arrival time, burst time)

o
[
]
w
o= i
w
o
==
-]

910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
T T T T T T T T T T T T T S A T
] T] T T T T T T T T T T T

P1(0, 1) |]

P2(0, 2)]

P3(0, 4)] |

P4(0, 6) L] L]

P5(0, 8)] I I
P6(11, 8)]] I
P7(11, 6)]]

P8(11, 4) L] ||

PO(11, 2)]

P10(11, 1) -

Quantum = 3

wait time
M burst time

Rate-monotonic scheduling

Rate-monotonic scheduling (RMS) assigns static priorities to the processes on the
basis of the cycle duration of the job.

The shorter the cycle duration is, the higher is the job's priority.
RMS scheduling is generally preemptive.

Preemption takes place when a higher priority task needs to be run while a lower
priority task is running.

Rate-monotonic scheduling

1!
m i [

Task 3

|
Period: 12
Computation time: 3
Priority: 1 {Lowest)
t
foleraiesd -_._-_I_-_.-_LL

t

I

‘R

t

Task 2

|

|

|

|

Period: 8 |
Computation time: 2 |
Priority: 2 (Middle) |
|

|

|

|

— " —— —— — — — — — —

I I
Il I
I I
Il I
Il I
Il I
|| I
Il |
I I
Il I
I I

— —— — ———— — — —

Image Reference: Generating multithread code from Simulink model for embedded target, by Petr Alexeev

https://blogs.abo.fi/alexeevpetr/2011/11/24/generating-multithread-code-from-simulink-model-for-embedded-target/

Deadline-monotonic scheduling

* Deadline-monotonic priority assignment is a priority assignment policy used with
fixed priority pre-emptive scheduling.

= Tasks are assigned priorities according to their deadlines.

= The task with the shortest deadline is assigned the highest priority.

Shortest Remaining Time First

" In shortest remaining time first (SRTF) scheduling method is preemptive.

* The process with the smallest amount of time remaining until completion is selected to
execute.

. Process) Time
(arrival time, burst time)

0o 1 2 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
I I T T R R T S A T T T T A S S T S S T
T | I S S — | B S S | BN S B e S Ea e —

1
1 T T v

P1(0, 1) I

P2(0, 2) []

P3(0, 3)]

p4(0, 4) |

P4(0, 5)]

P5(0, 6) | | I
P6(16, 1) [

P7(16, 2) []

P8(16, 3) I

P8(16, 4) |

P9(27, 1) I

P10(27, 2) []

P10(27, 3) L

wait time
Il burst time

Earliest deadline first scheduling

Earliest deadline first (EDF) is a dynamic scheduling algorithm to place processes in
a priority queve.

Whenever a scheduling event occurs (task finishes, new task released, etc.) the
queue will be searched for the process closest to its deadline.

This process is the next to be scheduled for execution.
EDF is an optimal scheduling algorithm on preemptive uniprocessors.

In the example below, deadlines are shaded as background in the timing diagram.

Process Timing Data

26

27

Process Execution Time Period — B —
P1
P2
P2 2 5

P3

P3 4 10

Least slack time scheduling

" Least slack time (LST) is a dynamic scheduling algorithm that assigns priority based
on the slack time of a process.

= Slack time is the amount of time left after a job if the job was started now.

" More formally, the slack time for a process at any time t is defined as:

Slack =(d—1t) — ¢’

where d is process deadline, t is the real time, and ¢’ is the remaining computation
time.

C ! Slack 1

| |

/

Task Arrives Task Deadline d

A
Y
A

