ECE3411 — Fall 2015

Lecture 6a.

Task Based Programming Revisited
Real Time Operating Systems

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UCONN

Example: How are the tasks scheduled?

while (1)
{
if (task1_timer == 0) // if task1_timer is not already equal to O,
// it is being decremented every 1 millisecond
// during a timer ISR
{
task1 _timer = t1;
task1(); // task1 takes m1 milliseconds
}
if (task2_timer == 0) // if task2_timer is not already equal to O,
// it is being decremented every 1 millisecond
// during a timer ISR
{
task2 timer = t2;
task2(); // task2 takes m2 milliseconds
}

Example Cont'd

= Suppose t1=5, m1=1,12=10, and m2=15
* What is the frequency f1 in Hz at which task1() is called?

* What is the frequency f2 in Hz at which task2() is called?

" Answer:

* Since both task1_timer and task2_timer are decremented to O during the execution of task2(), task1()
and task2() alternate.

" Therefore, f1=f2 = 1 every 16 ms which is equal to 1000/16 Hz.

Example Cont’d

Suppose t1=20, m1=1,1t2=10, and m2=15
What is the frequency f1 in Hz at which task1() is called?

What is the average frequency f2 in Hz at which task2() is called?

Answer:

Since task2_timer is decremented to O during the execution of task2(), task2() is called as often as
possible.
When it is task1()'s turn to be executed, it takes more than one and less than two executions of
task2_timer to get task1() decremented to O.
Therefore, the execution pattern converges to a repetition of task2() (takes 15 ms), task2() (takes 15
ms), task1() (takes 1 ms) giving

a frequency f_1=1000/31 Hz and

an average frequency f_2=2 * 1000/31.

Example Cont’d

Suppose t1=20, m1=1, t2=25, and m2=15
What is the frequency f1 in Hz at which task1() is called?

What is the frequency f2 in Hz at which task?2() is called?

Answer:

During the time that task?2() is executed (which takes 15 ms), task1_timer (which initial value is 20) is
decremented to a value v<=5.

The MCU will be idle for v ms after which task2_timer is decremented to 25-15-v and task1_timer just
turned into O.

So, after v ms task1() is executed taking 1ms during which task1_timer reduces to 19 and task2_timer
reduces by 1 to 9-v.

The MCU will be idle for another 9-v ms after which task1_timer is equal to 10+v and task2_timer just
turned into O.

Now task?2() is executed (which takes 15 ms) after which task1_timer is equal to O and task2_timer is equal
to 10.

The same argument is now repeated for v=0 showing that the execution pattern converges to a repetition
of task2() (takes 15 ms), task1() (takes 1 ms), idle time (takes @ ms) giving

a frequency f_1=f_2=1000/25 Hz.

Example Cont'd

= Suppose t1=4, m1=1, 12=8, and m2=4.
= Assume initially task1_timer = O and task2_timer = t2
* What is the average frequency f1 in Hz at which task1() is called?

* What is the average frequency f2 in Hz at which task?2() is called?

= Answer:
* Task 1 executes during the intervals [12n,12n+1], [12n+5,12n+6], for integers n>=0.
* Task 2 executes during intervals [12n+8,12n+12] for integers n>=0.

* This gives frequencies f_1=1000%2/12 Hz and f_2=1000/12 Hz.

Real Time 0S

* What follows is extracted or copied from MIT 16.07 (Perry)

" What is an Operating System (OS)?
= Basic operating system design concepts

* What is a Real Time OS (RTOS)?

* Realtime Kernel Design Strategies

What is an operating system?

An organized collection of software extensions of hardware that
Serve as...

- control routines for operating a computer (for example, to gain
access to computer resources (like file I/O))

- an environment for execution of programs

0S Services

Program
Interface

1000100100101100...
The range and extent Os Call
of services depends
upon needs
and characteristics of copy file

farget environment

DO
disk

User
Interface
(also a program)
perry - 423/01 OS - General Purpose Comptuiter

9

What does an 05 do?

" Manages computer system resources (processor, memory, | /O, etc.)
* Keeps track of status and “owner” of each resource
* Decided who gets resource

* Decides how long the resource can be in use

= |In systems that support concurrent execution of programs, it
= Resolves conflicts for resources

= Optimizes performance given multiple users

Types of operating systems

= Simplest = small kernel on embedded processor

" Most complex = full featured commercial OS
* Multi-user security

* Graphics support
* Networking support
* Peripherals communication

= Concurrent execution of programs

0S Hierarchy

Application
Program

Application
Program

User Mode

Taken from http://www.cloudbus.org /~raj/

Kermel Mode

System Services

File System

/

Memory and |/C Device Management

r

Processor Scheduling

r

Hardware

Figure 2.2: Layered Operating System

Tasks & Functions

= A task is a process that repeats itself
* Loop forever

" Essential building block of real time software systems

= A function is a procedure that is called. Once called, it runs and then exits possibly
returning a value.

functions
/|

while(1) /
{

get data();
process_data();

;
v\

task

loop

RTOS

Often RTOS = OS Kernel

An embedded system is designed for a single purpose so the user shell and file /disk
access features are unnecessary

RTOS gives you control over your resources
No background processes that “just happen”

Bounded number of tasks

RTOS gives you control over timing by allowing:

Manipulation of task priorities

Choice of scheduling options

Components 05 Kernel

= Task Scheduler: To determine which task will run next in a multitasking system
= Task Dispatcher: To perform necessary bookkeeping to start a task

= Intertask Communication: To support communication between one process (i.e. task)
and another

Realtime Kernel Design Strategies

" Polled Loop Systems
" Interrupt Driven Systems
= Multi-Tasking

= Foreground /Background Systems

Polled Loops

Simplest RT kernel

A single and repetitive instruction tests a flag that indicates whether or not an event
has occurred

Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel
No intertask communication or scheduling needed. Only single tasks exist

Excellent for handling high-speed data channels, especially when

Events occur at widely spaced intervals and

Processor is dedicated to handling the data channel

Polled Loops

" Pros:
= Simple to write and debug

* Response time easy to determine (as compared to our task-based programming example with two
rather than a single task)

= Cons:
* Can fail due to burst of events
* Generally not sufficient to handle complex systems

* Waste of CPU time, especially when event being polled occurs infrequently

Using Polled Loops

= Often used inside other real time schemes to, e.qg.,

= Poll a suite of sensors for data

* Check for user inputs (keyboard, keypad, UART data)

= Opposite of interrupt driven systems

20

What is an Interrupt (recap)?

A HW signal that initiates and event

Upon receipt of an interrupt, the processor
Completes the instruction being executed
Saves the program counter (so as to return to the same execution point)

Loads the program counter with the location of the interrupt handler code (ISR)

Executes the interrupt handler (ISR)

In practice, real time systems can handle several interrupts in priority fashion
Interrupts can be enabled /disabled (By setting appropriate registers.)

Highest priority interrupts serviced first (Which ones have the highest priority in Atmega328P?)

Processor must check for interrupts very frequently: If any have arrived, it stops
immediately and runs the associated ISR

Processor repeats: do one operation; check interrupts; if interrupts then suspend task and run ISR

A

ISR

ISR is a program run in response to an interrupt
Disables all interrupts
Clears the interrupt flag that got it called
Runs code to service the event
Re-enables interrupts

Exits so the processor can go back to its running task

Should be as fast as possible, because nothing else can happen when an interrupt is
being serviced (when interrupts happen very frequently, tasks are being stalled and
progress very slowly, in the worst case one instruction per ISR)

Interrupts can be
Prioritized (service some interrupts before others)
Disabed (processor doesn’t check or ignores all of them)

Masked (processor only sees some interrupts)

72

Examples interrupt-driven system

Interrupt Driven Software Examples

— IFF receiver sees a threat and interrupts an aircraft mission computer to
sound a cockpit alarm

— Inertial Navigation Unit data (A velocities in north/east/up coordinates) 1s
available at 32 Hz and interrupts the navigation software with new data
when it 1s ready

— Sonar contact data interrupts signal processing software when new data 1s
available

— Low altitude indicator triggers a fly-up command for a pilot

23

Multitasking

= Separate tasks that share one processor (or processors)

" Each task executes within its own context
* Owns processor
= Sees its own variables

* May be interrupted

= Tasks may interact to execute as a whole program

24

Example

Clock interupt

Navigation System Software
- Navigation Filter

e
-
"

Navigation Sensor Tasks

» Navigation Sensor Task retrieves data from sensor Mailbox is a circular
» Each task can only “see” its data ¥ /! buffer with a read and
* Clock-dnven scheduler drives tasks at vanous frequencies to - IIIIII vy / o write pointer
write sensor data to shared memeory
= Nawvigation filter retnieves data at scheduled mtervals e
Tk QD

pery - 425101 Data Tramsfer 25

Context Switching

When the CPU switches from one task to running another, its is said to have switched
contexts

Save the minimum needed to restore the interrupted process
Contents of registers
Contents of the program counter
Contents of coprocessor registers (if applicable)
Memory page registers
Memory-mapped /O

Special variables
During context switching, interrupts are often disabled

Real time systems require minimal times for context switches

26

Multitasking

* How do many tasks share the same CPU?
* Cyclic executive systems
* Round robin systems

* Pre-emptive priority systems

27

Cyclic Executive Systems

fimer

= Calls to statically ordered threads

Thread calls —

" Pros

* Easy to implement (used extensively in complex safety critical systems)

= Cons
" Not efficient in overall usage of CPU processing

* Does not provide optimal response time

28

Round Rohin Systems

Several processes execute sequentially to completion
Often in conjunction with a cyclic executive
Each task is assigned a fixed time slice

Fixed rate clock initiates an interrupt at a rate corresponding to the time slice
* Task executes until it completes or its execution time expires

* Context saved if task does not complete

Just like our task-based programming without fixed times slices per task

Last

Arrival order

29

Pre-emptive Priority Systems

= Higher priority task can preempt a lower priority task if it interrupts the lower-
priority task

= Priorities assigned to each interrupt are based upon the urgency of the task
associated with the interrupt

= Priorities can be fixed or dynamic
* Round Robin Systems - Preemptive Scheduling of 3 Tasks

Priority

Mdedium

Example: Aircraft Navigation System

High Priority: Task that agthers accelerometer
data every 5ms

Medium Priority: Task that collects gyro data
and compensates this data and the
accelerometer data every 40ms

Low Priority: Display update, Built-in-Test (BIT)

Time 30

Problems Multitasking

= High priority tasks hog resources and starve low priority tasks

* Low priority tasks share a resource with high priority tasks and block high priority
tasks

* How does a RTOS deal with some of these issues?
* Rate Monotonic Systems (higher execution frequency = higher priority)

* Priority Inheritance

31

Priority Inversion / Priority Inheritance

Task A and Task C share a resource
Task A is high priority
Task C is low priority

Task A is blocked when Task C runs (effectively assigning A to C’s priority, hence
priority inversion)

Task A will be blocked for longer, if Task B of medium priority comes along to keep
Task C from finishing

A good RTOS would sense this condition and temporarily promote Task C to the high
priority of Task A (Priority Inheritance)

32

Priority Inversion / Priority Inheritance

Priority

Inversion - The problem A4 biockad because C has

high
priority

km.

Priority

the resources

A e _

[¢] [c | B BembecCwhin

aire beeps A waiting

Inheritance - A solution

high
priority

m.

pary - 42501
1=

i

"

time

Y Cinherit A5 prioviy so it can
- finizh and them A cam have the resource

33

Foreground/Background Systems

Most common hybrid solution for embedded applications

Involve interrupt driven (foreground) AND noninterruptive driven (background)
processes

All realtime solutions are just a special case of foreground /background systems
Polled loops = background only system

Interrupt-only systems = foreground only system

Anything not time-critical should be in background

Background is process with lowest priority

34

Foreground/Background Systems

= Gives hybrid systems = combining what we have seen so far
* Polled loops
* Interrupt-driven systems
* Multi-tasking
* Pre-emptive priority or
* Round robin or

* Cyclic executive

35

Back to the multitasking example

Clock intemupt

Navigation Svstem Software
- e Nawvigation Filter Tasks

L

Sensor Data Processing Tasks g

Navigation Sensor Tasks -

Sensor dam

8

v

Fo———
1
.

* Polled loops: Nawvigation Sensor Tasks
* Interrupt Doven: Scheduler
. PIE‘—E]]Pﬁ"-"E‘ antj_: I'l'i“'_'ﬂlﬂl"_'ﬁ Access Tasks
*Navigation Filter Tasks
*Sensor Data Processing Tasks
*Memory Access Tasks

pery - 425101 36

Multitasking Pros & Cons

" Pros
= Segments the problem into small, manageable piece (modular computer system design principle)
* Makes more modular software (can reuse portions more easily)

* Allows software designer to prioritize certain tasks over others

= Cons

* Depending upon implementation, timing may not be deterministic (jitter caused by variations in timing
of incoming data)

= Context switching adds overhead

37

Full Featured RTOS

= Expand foreground /background solution
* Add network interfaces

* Add device drivers
* Add complex debugging tools

® Most common choice for complex systems

® Many commercial operating systems available

38

Choosing a RTOS approach

How do you know which one is right for your application?

Look at what is driving your system (arrival pattern of data)
Irregular (known but varying sequence of intervals between events)
Bursty (arbitrary sequence with bound on number of events)
Bounded (minimum interarrival interval)
Bounded with average rate (unpredictable event times, but cluster around mean)

Unbounded (statistical prediction only)

What is the critical 1/O?

Are there absolute hard deadlines?

39

Choosing a RTOS approach

How do you know which one 1s nght for your application? Let’s look at some
real life choices.

— Reusable Launch Vehicle for satellites. Thrust Vector Control SW
requires new attitude data every 40 msec or rocket becomes unstable.

* We chose cyclic executive.

— Nawvigation and Confrol System for submarine. Interface to multiple
sensors at multiple data rates. Information from the Inertial Reference
Unit 1s most critical, but exact uming of input data 1s not essential.

* We chose preemptive priority scheme running on a commercial
RTOS. Important tasks given highest prioriiy.

40

Choosing a RTOS approach

How do you know which one 1s right for your application? Let’s look at some
real life choices.

— Avionics System requures new data from flight control surfaces,
navigation equupment, and radar system every 50 msec.

* Cyclic executive. Each task runs to completion. Tasks run in series.
Last tasks may not finish before 50msec interrupt occurs.

— Microcontroller running to switch radar antennae and check for incoming
signal If the signal 15 there, power up the signal processing chip.

* We chose polled loop.

41

