
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Task Based Programming Revisited
Real Time Operating Systems

Lecture 6a.

Example: How are the tasks scheduled?

2

while (1)

{

if (task1_timer == 0) // if task1_timer is not already equal to 0,

// it is being decremented every 1 millisecond

// during a timer ISR

{

task1_timer = t1;

task1(); // task1 takes m1 milliseconds

}

if (task2_timer == 0) // if task2_timer is not already equal to 0,

// it is being decremented every 1 millisecond

// during a timer ISR

{

task2_timer = t2;

task2(); // task2 takes m2 milliseconds

}

}

Example Cont’d

 Suppose t1=5, m1=1, t2=10, and m2=15

 What is the frequency f1 in Hz at which task1() is called?

 What is the frequency f2 in Hz at which task2() is called?

 Answer:

 Since both task1_timer and task2_timer are decremented to 0 during the execution of task2(), task1()
and task2() alternate.

 Therefore, f1=f2 = 1 every 16 ms which is equal to 1000/16 Hz.

3

Example Cont’d

 Suppose t1=20, m1=1, t2=10, and m2=15

 What is the frequency f1 in Hz at which task1() is called?

 What is the average frequency f2 in Hz at which task2() is called?

 Answer:
 Since task2_timer is decremented to 0 during the execution of task2(), task2() is called as often as

possible.

 When it is task1()'s turn to be executed, it takes more than one and less than two executions of
task2_timer to get task1() decremented to 0.

 Therefore, the execution pattern converges to a repetition of task2() (takes 15 ms), task2() (takes 15
ms), task1() (takes 1 ms) giving

 a frequency f_1=1000/31 Hz and

 an average frequency f_2=2 * 1000/31.

4

Example Cont’d
 Suppose t1=20, m1=1, t2=25, and m2=15

 What is the frequency f1 in Hz at which task1() is called?

 What is the frequency f2 in Hz at which task2() is called?

 Answer:
 During the time that task2() is executed (which takes 15 ms), task1_timer (which initial value is 20) is

decremented to a value v<=5.

 The MCU will be idle for v ms after which task2_timer is decremented to 25-15-v and task1_timer just
turned into 0.

 So, after v ms task1() is executed taking 1ms during which task1_timer reduces to 19 and task2_timer
reduces by 1 to 9-v.

 The MCU will be idle for another 9-v ms after which task1_timer is equal to 10+v and task2_timer just
turned into 0.

 Now task2() is executed (which takes 15 ms) after which task1_timer is equal to 0 and task2_timer is equal
to 10.

 The same argument is now repeated for v=0 showing that the execution pattern converges to a repetition
of task2() (takes 15 ms), task1() (takes 1 ms), idle time (takes 9 ms) giving

 a frequency f_1=f_2=1000/25 Hz.

5

Example Cont’d

 Suppose t1=4, m1=1, t2=8, and m2=4.

 Assume initially task1_timer = 0 and task2_timer = t2

 What is the average frequency f1 in Hz at which task1() is called?

 What is the average frequency f2 in Hz at which task2() is called?

 Answer:

 Task 1 executes during the intervals [12n,12n+1], [12n+5,12n+6], for integers n>=0.

 Task 2 executes during intervals [12n+8,12n+12] for integers n>=0.

 This gives frequencies f_1=1000*2/12 Hz and f_2=1000/12 Hz.

6

Real Time OS

 What follows is extracted or copied from MIT 16.07 (Perry)

 What is an Operating System (OS)?

 Basic operating system design concepts

 What is a Real Time OS (RTOS)?

 Realtime Kernel Design Strategies

7

What is an operating system?

8

OS Services

9

What does an OS do?

 Manages computer system resources (processor, memory, I/O, etc.)

 Keeps track of status and “owner” of each resource

 Decided who gets resource

 Decides how long the resource can be in use

 In systems that support concurrent execution of programs, it

 Resolves conflicts for resources

 Optimizes performance given multiple users

10

Types of operating systems

 Simplest = small kernel on embedded processor

 Most complex = full featured commercial OS

 Multi-user security

 Graphics support

 Networking support

 Peripherals communication

 Concurrent execution of programs

11

OS Hierarchy

13Taken from http://www.cloudbus.org/~raj/

Tasks & Functions

 A task is a process that repeats itself

 Loop forever

 Essential building block of real time software systems

 A function is a procedure that is called. Once called, it runs and then exits possibly
returning a value.

14

RTOS

 Often RTOS = OS Kernel

 An embedded system is designed for a single purpose so the user shell and file/disk
access features are unnecessary

 RTOS gives you control over your resources

 No background processes that “just happen”

 Bounded number of tasks

 RTOS gives you control over timing by allowing:

 Manipulation of task priorities

 Choice of scheduling options

15

Components OS Kernel

 Task Scheduler: To determine which task will run next in a multitasking system

 Task Dispatcher: To perform necessary bookkeeping to start a task

 Intertask Communication: To support communication between one process (i.e. task)
and another

16

Realtime Kernel Design Strategies

 Polled Loop Systems

 Interrupt Driven Systems

 Multi-Tasking

 Foreground/Background Systems

17

Polled Loops

 Simplest RT kernel

 A single and repetitive instruction tests a flag that indicates whether or not an event
has occurred

 Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel

 No intertask communication or scheduling needed. Only single tasks exist

 Excellent for handling high-speed data channels, especially when

 Events occur at widely spaced intervals and

 Processor is dedicated to handling the data channel

18

Polled Loops

 Pros:

 Simple to write and debug

 Response time easy to determine (as compared to our task-based programming example with two
rather than a single task)

 Cons:

 Can fail due to burst of events

 Generally not sufficient to handle complex systems

 Waste of CPU time, especially when event being polled occurs infrequently

19

Using Polled Loops

 Often used inside other real time schemes to, e.g.,

 Poll a suite of sensors for data

 Check for user inputs (keyboard, keypad, UART data)

 Opposite of interrupt driven systems

20

What is an Interrupt (recap)?

 A HW signal that initiates and event

 Upon receipt of an interrupt, the processor

 Completes the instruction being executed

 Saves the program counter (so as to return to the same execution point)

 Loads the program counter with the location of the interrupt handler code (ISR)

 Executes the interrupt handler (ISR)

 In practice, real time systems can handle several interrupts in priority fashion

 Interrupts can be enabled/disabled (By setting appropriate registers.)

 Highest priority interrupts serviced first (Which ones have the highest priority in Atmega328P?)

 Processor must check for interrupts very frequently: If any have arrived, it stops
immediately and runs the associated ISR

 Processor repeats: do one operation; check interrupts; if interrupts then suspend task and run ISR

21

ISR

 ISR is a program run in response to an interrupt

 Disables all interrupts

 Clears the interrupt flag that got it called

 Runs code to service the event

 Re-enables interrupts

 Exits so the processor can go back to its running task

 Should be as fast as possible, because nothing else can happen when an interrupt is
being serviced (when interrupts happen very frequently, tasks are being stalled and
progress very slowly, in the worst case one instruction per ISR)

 Interrupts can be

 Prioritized (service some interrupts before others)

 Disabed (processor doesn’t check or ignores all of them)

 Masked (processor only sees some interrupts)

22

Examples interrupt-driven system

23

Multitasking

 Separate tasks that share one processor (or processors)

 Each task executes within its own context

 Owns processor

 Sees its own variables

 May be interrupted

 Tasks may interact to execute as a whole program

24

Example

25

Mailbox is a circular

buffer with a read and

a write pointer

Context Switching

 When the CPU switches from one task to running another, its is said to have switched
contexts

 Save the minimum needed to restore the interrupted process

 Contents of registers

 Contents of the program counter

 Contents of coprocessor registers (if applicable)

 Memory page registers

 Memory-mapped I/O

 Special variables

 During context switching, interrupts are often disabled

 Real time systems require minimal times for context switches

26

Multitasking

 How do many tasks share the same CPU?

 Cyclic executive systems

 Round robin systems

 Pre-emptive priority systems

27

Cyclic Executive Systems

 Calls to statically ordered threads

 Pros

 Easy to implement (used extensively in complex safety critical systems)

 Cons

 Not efficient in overall usage of CPU processing

 Does not provide optimal response time

28

Round Robin Systems

 Several processes execute sequentially to completion

 Often in conjunction with a cyclic executive

 Each task is assigned a fixed time slice

 Fixed rate clock initiates an interrupt at a rate corresponding to the time slice

 Task executes until it completes or its execution time expires

 Context saved if task does not complete

 Just like our task-based programming without fixed times slices per task

29

Pre-emptive Priority Systems

 Higher priority task can preempt a lower priority task if it interrupts the lower-
priority task

 Priorities assigned to each interrupt are based upon the urgency of the task
associated with the interrupt

 Priorities can be fixed or dynamic

30

Example: Aircraft Navigation System

- High Priority: Task that agthers accelerometer

data every 5ms

- Medium Priority: Task that collects gyro data

and compensates this data and the

accelerometer data every 40ms

- Low Priority: Display update, Built-in-Test (BIT)

Problems Multitasking

 High priority tasks hog resources and starve low priority tasks

 Low priority tasks share a resource with high priority tasks and block high priority
tasks

 How does a RTOS deal with some of these issues?

 Rate Monotonic Systems (higher execution frequency = higher priority)

 Priority Inheritance

31

Priority Inversion / Priority Inheritance

 Task A and Task C share a resource

 Task A is high priority

 Task C is low priority

 Task A is blocked when Task C runs (effectively assigning A to C’s priority, hence
priority inversion)

 Task A will be blocked for longer, if Task B of medium priority comes along to keep
Task C from finishing

 A good RTOS would sense this condition and temporarily promote Task C to the high
priority of Task A (Priority Inheritance)

32

Priority Inversion / Priority Inheritance

33

Foreground/Background Systems

 Most common hybrid solution for embedded applications

 Involve interrupt driven (foreground) AND noninterruptive driven (background)
processes

 All realtime solutions are just a special case of foreground/background systems

 Polled loops = background only system

 Interrupt-only systems = foreground only system

 Anything not time-critical should be in background

 Background is process with lowest priority

34

Foreground/Background Systems

 Gives hybrid systems = combining what we have seen so far

 Polled loops

 Interrupt-driven systems

 Multi-tasking

 Pre-emptive priority or

 Round robin or

 Cyclic executive

35

Back to the multitasking example

36

Multitasking Pros & Cons

 Pros

 Segments the problem into small, manageable piece (modular computer system design principle)

 Makes more modular software (can reuse portions more easily)

 Allows software designer to prioritize certain tasks over others

 Cons

 Depending upon implementation, timing may not be deterministic (jitter caused by variations in timing
of incoming data)

 Context switching adds overhead

37

Full Featured RTOS

 Expand foreground/background solution

 Add network interfaces

 Add device drivers

 Add complex debugging tools

 Most common choice for complex systems

 Many commercial operating systems available

38

Choosing a RTOS approach

 How do you know which one is right for your application?

 Look at what is driving your system (arrival pattern of data)

 Irregular (known but varying sequence of intervals between events)

 Bursty (arbitrary sequence with bound on number of events)

 Bounded (minimum interarrival interval)

 Bounded with average rate (unpredictable event times, but cluster around mean)

 Unbounded (statistical prediction only)

 What is the critical I/O?

 Are there absolute hard deadlines?

39

Choosing a RTOS approach

40

Choosing a RTOS approach

41

