
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

EEPROM
Watchdog Timer

Lecture 5c.

EEPROM: Electrically Erasable Programmable ROM

2

You should not access EEPROM in main in a loop, otherwise, it will not exist any more !

EEPROM reads in 2 cycles and writes in about 100 cycles

Flash (program + optional read only data): read in 2 cycles

RAM: read+write in 1 cycle each

Data in EEPROM remains even if you pull the chip out of the board or turn power on and off

EEPROM

3

EEPROM

4

EEPROM

5

EEPROM

6

One can do sequential writes

before an erasure:

• During a write one can only

flip bits from 0 to 1

• If a bit needs to flip from a 1

to 0, an erasure is required

before doing a write

• Hence, sequential writes may

be possible if only 0 to 1 bit

flips need to be written

• The lifetime of an eeprom bit

is about 100.000 0 1 write

and 10 erasure cycles

• So, if sequential writes before

an erasure are possible, the

lifetime of eeprom is not

unnecessarily shortened

EEPROM

7

EEPROM

8

9

10

EEPROM

11

#include <avr/eeprom.h>

#define eeprom_true 0 //Suppose you want to store a flag at position 0

#define eeprom_data 1 //Suppose you want to store data at position 1

// Code snippet in e.g. an initialization

if (eeprom_read_byte((uint8_t*)eeprom_true) = 'T')

{

time = eeprom_read_byte((uint8_t*)eeprom_data);

}

else

{

time = 0; //Initialize time to 0 as this is the first time the code is running on the MCU

//before it has ever been reset

}

(unint8_t*) is used to cast eeprom_data

and eeprom_true into a byte pointer

Use ‘T’ or something else from

default 0 byte data values

EEPROM

12

// Code snippet in some task:

if (SW1_Pressed)

{

if (eeprom_read_byte((uint8_t*)eeprom_true) != 'T')

{

eeprom_write_byte((uint8_t*)eeprom_true,'T');

}

eeprom_write_byte((uint8_t*)eeprom_data,time); //Write time to EEPROM

fprintf(stdout,"button push at %d \n\r", time); //Write time to UART

}

Watchdog Timer

13

Watchdog Timer

 Suppose your application is heating a room

 Once the temperature is too high, the application should turn off

 Implement a watchdog timer:

 An independent heat sensor causes an ISR (e.g., external interrupt) when the measured temperature is
low enough

 This ISR resets the watchdog and disables itself

 The main program regularly enables the ISR

 The watchdog will turn off the system if

 The sensor breaks no ISR will be called the watchdog is not reset the watchdog will count down to 0 and causes the
system to be reset (with or without executing a watchdog ISR before reset)

 The temperature is too high no ISR will be called etc.

 Safety: if sensor breaks or if temperature is to high, the system is reset

 In SW one can always reset the system if the temperature is too high, but how does it know whether
the sensor that measures the temperature is functioning correctly?

14

Watchdog Timer

15

Watchdog reset restarts the counter

before the time-out value is reached:

• #include <avr/wdt.h>

• wdt_reset();

Watchdog Timer

16

Watchdog Timer

 WDTCSR |= (1<<WDCE) | (1<<WDE);
 WDCE: Watchdog Change Enable allows to make changes during the next 4 cycles (= one operation)

 WDE: Watchdog Enable

 WDTCSR = (1<<WDIE)|(1<<WDE)|(1<<WDP3);
 This operation clears the WDCE bit as required by using = (not |=)

 WDIE: Watchdog Interrupt Enable E.g., we want an interrupt after 4.0 seconds

 WDE: Watchdog Enable means a system reset is generated after 4.0 seconds

 (1<<WDP3) sets a prescalar

17

Watchdog Timer

18

Watchdog Timer

19

Nothing can interrupt the timed sequence

Another example from the datasheet without interrupt enable

Watchdog Timer

 If we have enabled the interrupt, an interrupt is created before the system is reset

 E.g., ISR(WDT_vect) { Store state in eeprom }

 After system reset the initialization can read the last state from eeprom

 If a reset occurs, it is good practice to turn of the watchdog as soon as the MCU
starts

 The register contents survive after restart: this means the watchdog is enabled (and reset)

 If initialization takes too long, then the watchdog will time out and the MCU turns off: the MCU will
never get through the initialization

 So, turn off the watchdog at the start of your code, do the initialization, and turn on the watchdog
before entering the main while(1){ …} loop

20

Watchdog Timer

21

Watchdog Timer

22

#include <avr/wdt.h>

#include <avr/eeprom.h>

#define eeprom_true 0 //Suppose you want to store a flag at position 0

#define eeprom_data 1 //Suppose you want to store data at position 1

ISR (WDT_vect)

{

eeprom_write_dword((uint32_t*)eeprom_data,mode); //Write our current mode to EEPROM

eeprom_write_byte((uint8_t*)eeprom_true, 'T'); //Set write flag TRUE

}

void Initialize(void)

{

… all other initialization …

WDTCSR |= (1<<WDCE) | (1<<WDE); // Set Watchdog Condition Edit for four cycles

WDTCSR = (1<<WDIE) | (1<<WDE) | (1<<WDP3); // Set WDT Int and Reset; Prescalar at 4.0s.

}

Watchdog Timer

23

int main(void)

{

// WDOG Interrupt and Reset Disable, this only matters if reset occurs.

wdt_reset(); // Reset Watchdog timer

MCUSR &= ~(1<<WDRF); // Shut off Watchdog Reset Flag

WDTCSR |= (1<<WDCE) | (1<<WDE); // Set Watchdog Change Enable and WD Enable

WDTCSR = 0x00; // Disable Watchdog

Initialize();

// Read TimeOut from EEPROM

if (eeprom_read_byte((uint8_t*)eeprom_true) == 'T')

{

mode = eeprom_read_dword((uint32_t*)eeprom_data);

}

else

{

mode = 0; // Begin in normal mode

}

while (1) {….. }

}

