ECE3411 — Fall 2015

Lecture 5c.

EEPROM
Watchdog Timer

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UCONN

EEPROM: Electrically Erasable Programmable ROM

7.4 EEPROM Data Memory

The ATmegad48PA/88PA/168PA/328P contalns 256f512f512;‘1 K bytes of data EEPROM mem-
ory. It is organized as a separate data sp can be read and written. The
EEPROM has an endurance of at lea 100,000 write/erase cycles. The access between the
EEPROM and the CPU is described in the following, specifying the EEPROM Address Regis-
ters, the EEPROM Data Register, and the EEPROM Control Register.

"Memory Programming” on page 294 contains a detailed description on EEPROM Programming
in SPI or Parallel Programming mode.

You should not access EEPROM in main in a loop, otherwise, it will not exist any more !
EEPROM reads in 2 cycles and writes in about 100 cycles

Flash (program + optional read only data): read in 2 cycles
RAM: read+write in 1 cycle each

Data in EEPROM remains even if you pull the chip out of the board or turn power on and off

EEPROM

7.6 Register Description

7.6.1 EEARH and EEARL - The EEPROM Address Register

Bit 15 14 13 12 1 10 9 8
0x22 (0x42) - - - - - - - EEARS EEARH
0x21 (0x41) EEAR7 EEARG EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7] 5 4 3 2 1 0
Read/Write R R R R R R R RW
RW RwW RwW RwW R/W RW RW Riw
Initial Value 0 0 0 0 0 0 0 X
X X X X X X X X

* Bits 15..9 — Res: Reserved Bits
These bits are reserved bits in the ATmega48PA/88PA/168PA/328P and will always read as
zero.

. Bits 8.0 - EEAKS..0)EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
256/512/512/1K bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 255/511/51 The initial value of EEAR is undefined. A proper value must
be written before the EEPROM may be accessed.

EEARS is an unused bit in ATmega48PA and must always be written to zero.

EEPROM

7.6.2

EEDR - The EEPROM Data Register
Bit 7 6 5 4 3 2 1 0
oo oi0) [CWSE_] T T rss] eenw
Read/Write RIW RIW R/W R/W RIW R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

EEPROM

7.6.3 EECR — The EEPROM Control Register

Bit T §]) 4 3 2 1 0

oxiFoor [] -] EePwr | EePwo | Eeme | Eewre | Eere] EeRe] Eeck
Read/Write R R R/W RW RW RW R/W R/W

Initial Value 0 0 X X 0 0 X 0

+ Bits 7..6 — Res: Reserved Bits
These bits are reserved bits in the ATmegad8PA/88PA/168PA/328P and will always read as
Zero.

* Bits 5, 4 - EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 7-1. While EEPE

EEPROM

is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00
unless the EEPROM is busy programming.

Table 7-1. EEPROM Mode Bits

Programming
EEPM1 EEPMO Time Operation
0 0 3.4 ms Erase and Write in one operation (Atomic Operation)
0 1 1.8 ms Erase Only
1 0 1.8 ms Write Only
1 1 - Reserved for future use

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEPE is cleared. The interrupt will not be generated during EEPROM write or SPM.

* Bit2 - EEMPE: EEPROM Master Write Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

One can do sequential writes

before an erasure:

During a write one can only
flip bits from O to 1

If a bit needs to flip from a 1
to O, an erasure is required
before doing a write

Hence, sequential writes may
be possible if only O to 1 bit
flips need to be written

The lifetime of an eeprom bit
is about 100.000 0 =1 write
and 120 erasure cycles

So, if sequential writes before
an erasure are possible, the
lifetime of eeprom is not
unnecessarily shortened

EEPROM

« Bit 1 - EEPE: EEPROM Write Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

Wait until EEPE becomes zero.

Wait until SELFPRGEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See "Boot Loader
Support — Read-While-Write Self-Programming, ATmega388PA, ATmega168PA and
ATmega328P" on page 277 for details about Boot programming.

A

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

EEPROM

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is

available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 7-2 lists the typical pro-
gramming time for EEPROM access from the CPU.

Table 7-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time
EEPROM write
(from CPU) 26,368 3.3ms

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts glob-
ally) so that no interrupts will occur during execution of these functions. The examples also
assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example

EEPROM _write:
; Wait for completion of previous write
sbic EECR,EEPE
rimp EEPRCM write
; Set up address (rl8:rl7) in address register
out EEARH, rl8
out EEAEL, rl7
; Write data (rlé) to Data Register
out EEDE,rlé6
; Write logical one to EEMPE
sbi EECER, EEMPE
; Start eeprom write by setting EEPE
sbi EECE, EEPE

ret

C Code Example

void EEPRECM write (unsigned int uiZddress, unsigned char ucData)
{

i

/* Walt for completion of previous write */
while (EECR & (l<<EEPE))

/* Set up address and Data Registers */
EEAR = ulAddress;

EEDR = ucData;

/* Write logical one to EEMFPE */

EECR |= (l<<EEMPE);

/* Start eegprom write by setting EEPE */
EECR |= (1<<EEPE);

Assembly Code Example

EEPEOM read:
; Wait for completion of previous write
sbic EECE, EEFPE
rjmp EEPROM read
; Set up address (rl18:r17) in address register
out EEAEREH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECE, EERE
; Head data from Data Register
in rl&,EEDE

ret

C Code Example

unsigned char EEFPREOM_read(unsigned int uilddress)
{

J* Walt for completion of previous write */
while(EECR & (l<<EEPE))

/* Set up address register */

EEAR = uilAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

EEPROM

#include <avr/eeprom.h>
#define eeprom_true O //Suppose you want to store a flag at position O
#define eeprom_data 1 //Suppose you want to store data at position 1

// Code snippet in e.g. an initialization
if (eeprom_read_byte((vint8_t*)eeprom_true) = 'T')

{

Use ‘T’ or something else from
default O byte data values

time = eeprom_read_byte((uint8_t*)eeprom_data); (unint8_t*) is used to cast eeprom_data
} and eeprom_true into a byte pointer
else

{

time = 0; //Initialize time to O as this is the first time the code is running on the MCU
//before it has ever been reset

EEPROM

// Code snippet in some task:
if (SW1_Pressed)

{

if (eeprom_read_byte((uint8_t*)eeprom_true) 1= 'T')

{
}

eeprom_write_byte((uint8_t*)eeprom_data,time); //Write time to EEPROM
fprintf(stdout, "button push at %d \n\r", time); //Write time to UART

eeprom_write_byte((uint8_t*)eeprom_true, T');

Watchdog Timer

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown

by saving critical parameters before a system reset.
Table 10-1. Watchdog Timer Configuration

WDTON'" WDE WDIE Mode Action on Time-out
1 0 0 Stopped None
1 0 1 Interrupt Mode Interrupt

1

0

System Reset Mode

Reset

Interrupt and System Reset
Mode

Interrupt, then go to System
Reset Mode

System Reset Mode

Reset

Watchdog Timer

Suppose your application is heating a room
Once the temperature is too high, the application should turn off

Implement a watchdog timer:

An independent heat sensor causes an ISR (e.g., external interrupt) when the measured temperature is
low enough

This ISR resets the watchdog and disables itself
The main program regularly enables the ISR

The watchdog will turn off the system if

The sensor breaks = no ISR will be called = the watchdog is not reset = the watchdog will count down to O and causes the
system to be reset (with or without executing a watchdog ISR before reset)

The temperature is too high = no ISR will be called 2 etc.

Safety: if sensor breaks or if temperature is to high, the system is reset

In SW one can always reset the system if the temperature is too high, but how does it know whether
the sensor that measures the temperature is functioning correctly?

Watchdog Timer

Figure 10-7. Watchdog Timer

I WATCHDOG
128kHz — 3P PrescALER
OSCILLATOR R A FEREEFEREFANER
SEEEEREEE
288353508
ololo|g
= % WDFO
Watchdog reset restarts the counter
WATCHDOG woP]
before the time-out value is reached: RESET S WDP2
* #include <avr/wdt.h> WDPs3
wdt_reset(); WDE . MCU RESET
WDIF }
WDIE 1 INTERRUPT

Watchdog Timer

10.9.2

WDTCSR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 0

(0x60) WDIF WDIE | WDP3 | WDCE m WDP1 | WDPO | WDTCSR
Read/Write RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 X 0 0 0

To further ensure program security, altera-

tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

1.

In the same operation, write a logic one to the Watchdog change enable bit (WDCE) and

WDE. A logic one must be written to WDE regardless of the previous value of the WDE

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

Watchdog Timer

10.9.2 WDTCSR - Watchdog Timer Control Register

Bit 7 6 5 4 3 2 1 0
(0x60) WDIF WDIE | WDP3 | WDCE WDP2 | WDP1 | WDPO | WDTCSR
Read/Write RIW RIW RIW RIW

Initial Value 0 0 0 0 X 0 0 0

= WDTCSR | = (1<<WDCE) | (1<<WDE);
* WDCE: Watchdog Change Enable allows to make changes during the next 4 cycles (= one operation)

* WDE: Watchdog Enable

= WDTCSR = (1<<WHDIE) | (1<<WDE) | (1<<WDP3);
* This operation clears the WDCE bit as required by using = (not | =)
* WDIE: Watchdog Interrupt Enable = E.g., we want an interrupt after 4.0 seconds
* WDE: Watchdog Enable means a system reset is generated after 4.0 seconds
* (T<<WDP3) sets a prescalar

Watchdog Timer

Table 10-2. Watchdog Timer Prescale Select
Number of WDT Oscillator Typical Time-out at
WDP3 | WDP2 | WDP1 | WDPO Cycles Ve = 5.0V
0 0 0 0 2K (2048) cycles 16 ms
0 0 0 1 4K (4096) cycles 32 ms
0 0 1 0 8K (8192) cycles 64 ms
0 0 1 1 16K (16384) cycles 0125s
0 1 0 0 32K (32768) cycles 025s
0 1 0 1 64K (65536) cycles 0.5s
0 1 1 0 128K (131072) cycles 1.0s
0 1 1 1 256K (262144) cycles 20s
(1 0 0 512K (524288) cycles 40s
1 0 0 1 1024K (1048576) cycles 80s

Watchdog Timer

void WDT_Prescaler_ Change (void)

{

__disable_interrupt(); < Nothing can interrupt the timed sequence

_ watchdog_reset();
/* Start timed equence */
WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) wvalue = 64K cycles (~0.5 s) */

WDTCSR = (1<<WDE) | (1l<<WDP2) | (1l<<WDPO);

__enable interrupt();

Another example from the datasheet without interrupt enable

Watchdog Timer

If we have enabled the interrupt, an interrupt is created before the system is reset
E.g., ISR(WDT_vect) { Store state in eeprom }

After system reset the initialization can read the last state from eeprom

If a reset occurs, it is good practice to turn of the watchdog as soon as the MCU
starts
The register contents survive after restart: this means the watchdog is enabled (and reset)

If initialization takes too long, then the watchdog will time out and the MCU turns off: the MCU will
never get through the initialization

So, turn off the watchdog at the start of your code, do the initialization, and turn on the watchdog
before entering the main while(1){ ...} loop

20

Watchdog Timer

void WDT off (void)
{

__disable_interrupt();

_ _watchdog_reset();
/* Clear WDRF in MCUSR */

MCUSR &= =~ (l<<WDRF) ;
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out */

WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCSR = 0x00;

_ _enable_interrupt();

A

Watchdog Timer

#include <avr/wdt.h>

#include <avr/eeprom.h>
#define eeprom_true O //Suppose you want to store a flag at position O
#define eeprom_data 1 //Suppose you want to store data at position 1

ISR (WDT_vect)

{
eeprom_write_dword((uint32_t*)eeprom_data,mode); //Write our current mode to EEPROM
eeprom_write_byte((uint8_t*)eeprom_true, 'T'); //Set write flag TRUE

}

void Initialize(void)

{

... all other initialization ...
WDTCSR | = (1<<WDCE) | (1<<WDE); // Set Waichdog Condition Edit for four cycles
WDTCSR = (1 <<WHDIE) | (1<<WDE) | (1<<WDP3); // Set WDT Int and Reset; Prescalar at 4.0s.

72

Watchdog Timer

int main(void)

{

// WDOG Interrupt and Reset Disable, this only matters if reset occurs.

wdt_reset(); // Reset Watchdog timer
MCUSR &= ~(1<<WDRF); // Shut off Watchdog Reset Flag
WDTCSR | = (1<<WDCE) | (1<<WDE); // Set Watchdog Change Enable and WD Enable
WDTCSR = 0x00; // Disable Watchdog
Initialize();
// Read TimeOut from EEPROM
if (eeprom_read_byte((uint8_t*)eeprom_true) == 'T')
{
mode = eeprom_read_dword((uint32_t*)eeprom_data);
}
else
{
mode = 0; // Begin in normal mode
}

while (1) {}

