
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk , syed.haider}@engr.uconn.edu

ADC: Analog to Digital Conversion

Lecture 5b.

ADC Noise Canceler

2

ADC Noise Reduction Mode = ADC Sleep Mode

 Enable sleep;

 Start conversion

 MCU will be sleeping except for the conversion

 Set ADC interrupt and write ISR

 All timers stop when you use ADC sleep; only ADC, timer 2, and interrupts stay running

 Do something wrong here and it may sleep forever

 Always double check register settings and ISRs ..

3

Sleep Modes

4

ADC Noise Reduction

5

Example code ADC with noise reduction

6

// Written by Bruce Land - Cornell University

#include <inttypes.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <avr/sleep.h>

#include <stdio.h>

#include <stdlib.h>

#include <util/delay.h>

#include <math.h>

#include "uart.h"

#define Vref 5.00

volatile int Ain, AinLow;

volatile float Voltage;

char VoltageBuffer[10];

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

Example code ADC with noise reduction

7

ISR (ADC_vect)

{

// Program ONLY gets here when ADC done flag is set

// When reading 10-bit values you MUST read the low byte first

AinLow = (int)ADCL;

Ain = (int)ADCH*256;

Ain = Ain + AinLow;

}

Example code ADC with noise reduction

8

int main(void)

{

//init the A to D converter

ADMUX = 0b00000001;

ADCSRA = (1<<ADEN) | (1<<ADIE) + 7 ;

SMCR = (1<<SM0) ; // sleep -- choose ADC mode

// init the UART -- uart_init() is in uart.c

uart_init();

stdout = stdin = stderr = &uart_str;

fprintf(stdout,"\n\rStarting ADC ISR demo...\n\r");

// Need the next two statements so that the USART finishes

// BEFORE the cpu goes to sleep.

while (!(UCSR0A & (1<<UDRE0))) ; // Is UART still doing stuff?

_delay_ms(1); // enough time to empty the transmit buffer

sleep_enable();

sei();

Example code ADC with noise reduction

9

while (1)

{

// Get the sample

//The sleep statement lowers digital noise and starts the A/D conversion

sleep_cpu();

//program ONLY gets here after ADC ISR is done

voltage = (float)Ain ;

voltage = (voltage/1024.0)*Vref ; //(fraction of full scale)*Vref

dtostrf(voltage, 6, 3, v_string);

printf("%s", v_string);

// Need the next two statements so that the USART finishes

// BEFORE the cpu goes to sleep the next time thru the loop.

while (!(UCSR0A & (1<<UDRE0))) ; // Is UART still doing stuff?

_delay_ms(1); // enough time to empty the transmit buffer

}

return 0;

}

Exercises

 Can you get rid of the _delay_ms(1) instruction in the while loop by using a task
based programming approach?

 This would be useful if other tasks would need to execute as well.

 Note that each char takes about 1ms to print:

 Is a 1ms delay in the main while loop enough? Why?

 How many ms does while (!(UCSR0A & (1<<UDRE0))); approximately wait in the main while loop?

 In a task based approach would it be better to avoid while (!(UCSR0A & (1<<UDRE0))); ?

 And how would you do this?

 Check the code in the slides (I changed an earlier version without double checking:
you may figure out a bug here and there)

10

Example Problem: What is happening in the following code?

11

... inclusion of packages ...

... declaration of global variables ...

... we assume a 20MHz crystal ...

ISR (TIMER0_COMPA_vect)

{

//Update task timer

if (taskADC_timer >0) {--taskADC_timer;}

}

ISR (ADC_vect)

{

//Read a 10-bit conversion

AinLow = (int)ADCL;

Ain = (int)ADCH*256;

Ain = Ain + AinLow;

}

What is happening in the following code?

12

void taskADC(void)

{

//Reset task timer

taskADC_timer = 400;

//Convert Ain into a voltage

voltage = ((1.0*Ain)/1024.0)*5.0;

... Some more computation: sometimes taking more and sometimes taking less time ...

... However, no matter how long taskADC() takes, its execution is always <= 200 ms ...

}

What is happening in the following code?

13

int main(void)

{

... initialization variables ...

| //set up timer 1 for 3.2 micro second counter increments

| TCCR1B = 3; //set prescalar to divide by 64

//set up timer 0 such that ISR(TIMER0_COMPA_vect) is called every 1 milli second

OCR0A = 77; //Set the compare reg to 78 time ticks

TIMSK0 = (1<<OCIE0A); //Turn on timer 0 cmp match ISR

TCCR0B = 4; //Set prescalar to divide by 256

TCCR0A = (1<<WGM01); //Turn on clear-on-match

//how accurate is this timer?

What is happening in the following code?

14

//initialize the A to D converter

DDRC &= 0xF0; //Set PORTC[3:0] as input for ADC

ADMUX = 0b00000001; //Indicate which pin should be measured

ADCSRA = (1<<ADEN) | (1<<ADIE) + 7 ; //Enable AD converter, enable its interrupt,

//set prescalar (notice that the ADSC bit is

//not set, so no ADC conversion is started)

SMCR = (1<<SM0) ; //Choose ADC sleep mode

sleep_enable();

sei();

What is happening in the following code?

15

while (1)

{

if (taskADC_timer == 0)

{

| //Measure timer 1

| T1poll_before = TCNT1;

//Perform an ADC measurement in sleep mode, and execute taskADC:

sleep_cpu();

taskADC();

| //Measure timer 1 again and update busy with the amount of micro seconds that

| //have passed: every TCNT1 to TCNT1+1 increment takes 3.2 micro seconds.

| T1poll_after = TCNT1;

| if T1poll_after > T1poll_before {busy += (T1poll_after-T1poll_before)*3.2;}

| else {busy += ((T1poll_after-T1poll_before)+65536)*3.2;}

}

}

}

The main body initializes timer 1, which is being polled

before an ADC measurement in sleep mode and before the

execution of an "ADC task", and which is polled again as

soon as the measurement and task execution are finished.

The difference is converted to micro seconds and added to a variable busy. The goal of

busy is to measure the time during which the MCU is doing "useful" work. The code that is

related to busy is highlighted with vertical bars.

What is happening in the following code?

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 ISR(TIMER0_COMPA_vect)

 ?????

16

What is happening in the following code?

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 ISR(ADC_vect)

 ?????

17

What is happening in the following code?

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 sleep_cpu()

 ?????

18

What is happening in the following code?

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 taskADC()

 ?????

19

What is happening in the following code?

 The program assumes that taskADC() always takes <=200 ms. Use this assumption to
explain why the code

if T1poll_after > T1poll_before {busy += (T1poll_after-T1poll_before)*3.2;}

else {busy += ((T1poll_after-T1poll_before)+65536)*3.2;}

 correctly adds to busy the time in micro seconds that passed between the polling of
T1poll_before and the polling of T1poll_after.

 Solution: ??????

20

Solutions

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 ISR(TIMER0_COMPA_vect)

 Sometimes:

 The ADC task is executed approximately every 400 ms and executes in less than 200 ms.

 So, there is always a significant number of ms during which the while loop does not execute the code
within the if statement.

 During this "idle" time the timer ISR is called every ms but its execution time is not added into busy.

 During the time that the ADC task is executed the timer ISR will also be called and executed. These
execution times do get added into busy.

21

Solutions

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 ISR(ADC_vect)

 Always:

 Right after sleep_cpu(), the ADC ISR is called.

 Since sleep_cpu() is part of a busy wrapper, the execution time of each ADC ISR is part of busy's
measurement.

22

Solutions

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 sleep_cpu()

 The data sheet writes for the ADC Noise Reduction Mode that ”... the SLEEP
instruction makes the MCU enter ADC Noise Reduction mode, stopping the CPU but
allowing the ADC, the external interrupts, 2-wire Serial Interface address match,
Timer/Counter2 and the Watchdog to continue operating (if enabled) ...” This means
that all other HW modules stop working, in particular, the other timers/counters stop
incrementing.

 Never:

 During the execution of sleep_cpu() timer 1 does not increment.

 Hence, its execution time cannot be measured by polling TCNT1.

23

Solutions

 Answer with "never", "sometimes", or "always", whether the execution times
(measured in micro seconds) of the following procedures are added into busy
(explain your answers):

 taskADC()

 Always:

 the ADC task is part of a busy wrapper.

24

Solutions

 The program assumes that taskADC() always takes <=200 ms. Use this assumption to
explain why the code

if T1poll_after > T1poll_before {busy += (T1poll_after-T1poll_before)*3.2;}

else {busy += ((T1poll_after-T1poll_before)+65536)*3.2;}

correctly adds to busy the time in micro seconds that passed between the polling of
T1poll_before and the polling of T1poll_after.

 Solution:

 Each task takes less than 200 ms, which is less than 2^{16} * 3.2 micro seconds (=209.7 ms),

 which is the time it takes to increment TCNT1 from 0 to its maximum value.

 So, TCNT1 may at most loop through once.

 If TCNT1 does not loop through, then T1poll_after > T1poll_before and (T1poll_after-T1poll_before)*3.2} measures the amount
of time that has lapsed in micro seconds.

 If TCNT1 loops though once, then T1poll_after <= T1poll_before and ((T1poll_after - 0) + (2^{16} - T1poll_before))*3.2
measures the amount of time that has lapsed.

25

