ECE3411 — Fall 2015

Lecture 5a.

ADC: Analog to Digital Conversion

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UCONN

Voltage reference Vref:

Diagram

ADMUX To sample, switch connects a capacitor to the output of a buffer amplifier,
which charges or discharges the capacitor. This makes voltage across the
capacitor proportional to the input voltage. To hold, the switch disconnects.

ADCQO =
ADCT | Analog

Mox S > S&H > + Conver.sion logic implements a
ADC7 ——f ocke - successive approximation

off Mux

Bandgap

gnd :/

By default: Aref pin supplies Vref if a fixed voltage source
is connected to the Aref pin
The internal 1.1V reference is generated from the internal
bandgap reference through an internal amplifier
AVCC is connected to the ADC through a passive switch and
can be made Vref = Vec +/- 0.3V

To reduce noise for Vref equal to 1.1V or AVCC the Aref
pin can be externally decoupled by a capacitor to ground

Aref =

I

Conversion Logic

1

Prescalar

algorithm (a binary search;

one bit per search):

- DAC takes as input the
output of the conversion
logic and converts it to an
analog voltage where Aref
sets the full range

- Analog comparator
decides whether the DAC
output or input voltage is
the largest

Figure 23-1.

8-BIT DATA BUS

Analog to Digital Converter

A COMYWERSIOM
COMFPLETE 1RO

Block Schematic Operation,

AFIEFI I

TEMFPERATURE
SENSOR

S

BAMDGAR

REFEREMCE

ADC?I i

INPUT

ADCEI I

ML

| o
2 < 15 o
ADC MULTIPLEXER ADC CTRL. & STATLUS AlDC DATA REGISTER
SELECT (AR REGISTER (ADCSRA) (ADCH/ADICL)
— — - e —
2l B3 HEIEE g 2T=ls] # 2 2 A
= B 3 = === g 8| 3| 2 =] =1 =] =
=
=
.
MUX DECODER I .
FRESCALER
S - h -
=
E COMYERSION LOWEIC
o
= -
=
=
INTERMAL 1.1V
REFEREMCE SAMPLE & HOLD
\ COMPARATOR
- 10-BIT DAaC -

ADC MULTIPLEXER

» SUTPUT

Pin Assignment

Figure 23-9. ADC Power Connections

sue|d punoly Bojeuy HMoL 4u00l

)
)

j PC1 (ADC1
|] pco (apco

(z0av) god
(e0av) €0d

(vas/roav) +od

(10s/80av) s0d

Normal Conversion

= Takes 13 cycles

Figure 23-3. ADC Timing Diagram, Single Conversion

One Conversion . Mext Convarsion
¥]

|
Cycle Number |1|F|3|4|5|5|?|9|9|1n|11|12|13| |1|2|3

e ntyininlinininlinininininininlebsininl
ADSC 7 L7

|
| | | |
ADIF | | | '
| | |

II

ADCH 'EHIH;’HIHJ’!HIJ’HIHHHIHHIIHHHHHHHHHHHIIHH;}K 55!?:1”3”““550"“95”“
ADCL }’fffff,}’ffff{iff}*’fffffffffffffffff}*’fffffffffffffffff}*’fffffff}}:(. :_EB of Resul
N\ TS Sample & Hold Conversion /+ _ MUY and BEFS

Il_ MUX and REFS Completa Update
Update

Accuracy

= Capacitor in S&H leaks and can therefore not hold a value for too long

* There exists a minimum sample speed/frequency

= Conversion logic takes time, so we cannot sample too fast

" There exists a maximum sample speed /frequency

* The faster you sample, you get a smaller number of accurate output bits (since the binary search
cannot completely finish)

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

* Noise: MCU produces up to 150mV line noise, there are other sources such as
electrical field, etc.

* Use capacitances close to the CPU to eliminate most of the inductance

Prescalar

Table 23-5. ADC Prescaler Selections

ADPS2 ADPS1 ADPSO Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

E.g., a prescalar of 128 gives 16MHz/128 = 125000 (between 50 and 200 kHz)
To complete the binary search takes 13 cycles = 13/125000 = 104 micro seconds

Gives 10 bits uncalibrated accuracy at a linear scale to Vref

ADC clock is twice as fast as the cycle frequency; therefore the smallest prescalar must be >=2
7

ADMUX Register

23.9.1 ADMUX — ADC Multiplexer Selection Register

Bit 7 6 5 4 3 2 1 0
(0x7C) REFS1 | REFSO | ADLAR | - | MUX3 | MUXZ | MUX1 | MUX0 | ADMUX
Read/Write / RIW RIW R RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

Table 23-3. Voltage Reference Selections for ADC

REFS1 REFS0 | Voltage Reference Selection

0 0 AREF, Internal V g turned off
0 1 AV with external capacitor at AREF pin
1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor at AREF pin

ADMUX Register

23.9.1 ADMUX — ADC Multiplexer Selection Register

Bit 7 B 5 4 3 2 1 0
(0x7C) | REFS1 | REFSO | ADLAR | - | MUX3 | MUX2 | MUX1 | MUX0 § ADMUX
Read/Write / R/W RW R RW RW RAW RW
Initial Value 0 0 0 0 0 0 0 0
Table 23-4. Input Channel Selections
MUX3..0 Single Ended Input
0ooo ADCO
0001 ADC1
0010 ADC2
oot ADC3 0..7 indicate input pins ADCO .. ADC7
0100 ADC4
0101 ADCS
0110 ADCE
0111 ADC7
1000 ADCs(™
1001 (reserved)
1010 (reserved)
1011 (reserved)
1100 (reserved)
1101 (reserved)
1110 1.1V (Vgg)
1111 0V (GND)

Note: 1. For Temperature Sensor.

ADMUX Register

23.9.1

23.9.3

23.9.3.1

23.9.3.2

ADMUX — ADC Multiplexer Selection Register

ADCL and ADCH - The ADC Data Register

ADLAR =0

ADLAR =1

Bit
(0x7C)
ReadWrite

Imitial Value

7 4] 5 4 3 2 1 0
I REFS1 REFS0 | ADLAR - MUX3 MuX2 MUX1
R/wW RAW RW R R/W RAW RW R/W
1] 0 a 0 0 a 1] 0

ADLAR = Analog Data Left Adjust Register

Bit 15 14 13 12 11 10 9 8
(0x79) - - - - - - ADCY ADC8
(0x78) ADCTY ADCG ADCS ADC4 ADC3 ADC2 ADC1 ADCO ADCL
7 B 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
] 0]] 0 0] 0
Bit 15 14 13 12 11 10 9 8
(0x79) ADC3H ADCS ADCY ADCoH ADCS ADC4 ADC3 ADC2 I ADCH
(0x78) ADC1 ADCO - - - - - - I ADCL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

MUXO0 I ADMUX

apci |f ADLAR is set to O,

read ADCL for low order bits, and
until ADCH is read the ADC is
locked out

For 8-bit conversion, set
ADLAR to 1 and read ADCH

ADCSRA: ADC Status Register A

23.9.2 ADCSRA - ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0
(0xTA) [ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 | ADPS1 | ADPSO | ADCSRA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

Bit 7: ADEN — analog converter enable bit; set this bit to 1 if you want to do a
conversion

Bit 6 ADSC — AD start conversion; if it is set to 1, then a conversion is started for you
and it is auto set back to O when done
You can pull this bit and as soon as it is O, you know the conversion is done

Or you can pull the interrupt flag (or use the corresponding ISR if enabled):

Bit 4: ADIF — AD interrupt flag; will be set when a conversion is done and will
trigger an interrupt if ADIE is set
Warning: do not mess with this flag, e.g., use ADCSRA |= (1<<ADSC);

ADCSRA: ADC Status Register A

23.9.2 ADCSRA - ADC Control and Status Register A

Bit 7 6 5 4 3 2 1 0
(0xTA) [ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2 | ADPS1 | ADPSO | ADCSRA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

= Bit 3: ADIE — AD interrupt enable; if turned on, write the ISR to handle what
happens when conversion finishes

= Bit 5: ADATE — allows one out of 8 selected events to trigger the ADC converter
when coupled with the ADCSRB register

= Bits O0,1,2: prescalar (see previous slide)

ADCSRB

2394 ADCSRB - ADC Control and Status Register B

Bit 7 6 5 4 3 2 1 0
(0x7B) [- [ACME | - | - | - | ADIS2 | ADTS1 | ADTS0O | ADCSRB
Read/Write R RIW R = R RAW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

Table 23-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTSO0 Trigger Source
0 0 0 Free Running mode
0 0 1 Analog Comparator
0 1 0 External Interrupt Request O
0 1 1 Timer/Counter0 Compare Match A
1 0 0 Timer/Counter0 Overflow
1 0 1 Timer/Counter1 Compare Match B
1 1 0 Timer/Counter1 Overflow
1 1 1 Timer/Counter1 Capture Event

Example code ADC, no interrupt

// Borrowed from Bruce Land - Cornell University
// Performs single, left adjusted conversions and prints to UART

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#Hinclude <stdio.h>
#include <stdlib.h>
#include <util/delay.h>
#include <math.h>
#include "uvart.h"

volatile int Ain, AinLow;
volatile float Voltage;

char VoltageBuffer[6];

FILE vart_str = FDEV_SETUP_STREAM(uart_putchar, vart_getchar, _FDEV_SETUP_RW);

Example code ADC, no interrupt

void main(void)

{
DDRC &= 0x00; // PC1 = ADCI is set as input

vart_init();
stdout = stdin = stderr = &uart_str;

// ADLAR set to 1 => left adjusted result in ADCH
// MUX3:0 set to 0001 = input voltage at ADCI
ADMUX = (1<<MUXO0) | (1<<ADLAR);

// ADEN set to 1 = enables the ADC circuitry
// ADPS2:0 set to 111 = prescalar set to 128 (104us per conversion)
ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1 <<ADPS

// Start A to D conversion
ADCSRA | = (1<<ADSC);
fprintf(stdout," \n\rStarting ADC demo...\n\r");

Takes more than 1ms, hence conversion
will finish which takes 104us

Example code ADC, no interrupt

while (1)

{
// Read from ADCH to get the 8 MSBs of the 10 bit conversion
Ain = ADCH;

// Typecast the volatile integer into floating type data, divide by maximum 8-bit value, and
// multiply by 5V for normalization
Voltage = (float)Ain/256.00 * 5.00;

//ADSC is cleared to O when a conversion completes. Set ADSC to 1 to begin a conversion.
ADCSRA | = (1<<ADSC);

// Write Voltage to string format and print (3 char string + “.” + 2 decimal places)
dtostrf(Voltage, 3, 2, VoltageBuffer);
fprintf(stdout, " %s\n\r",VoltageBuffer);

) T~

Takes more than 1ms, hence conversion
return O; will finish which takes 104us

Conversion needs to finish

Conversion needs to finish before the next conversion is called

Use a print statement

Delay functionality (of at least 104us)
while (I(ADCSRA & (1<<ADSC) == 0)) {}

= The most efficient solution

