
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

ADC: Analog to Digital Conversion

Lecture 5a.

Diagram

2

Analog

Mux

ADMUX

Clocked

off Mux

S&H

DAC

Conversion Logic

ADC0

ADC1

ADC7

Bandgap

gnd

… +

--

Prescalar

Aref

To sample, switch connects a capacitor to the output of a buffer amplifier,

which charges or discharges the capacitor. This makes voltage across the

capacitor proportional to the input voltage. To hold, the switch disconnects.

Voltage reference Vref:

- By default: Aref pin supplies Vref if a fixed voltage source

is connected to the Aref pin

- The internal 1.1V reference is generated from the internal

bandgap reference through an internal amplifier

- AVCC is connected to the ADC through a passive switch and

can be made Vref = Vcc +/- 0.3V

- To reduce noise for Vref equal to 1.1V or AVCC the Aref

pin can be externally decoupled by a capacitor to ground

Conversion logic implements a

successive approximation

algorithm (a binary search;

one bit per search):

- DAC takes as input the

output of the conversion

logic and converts it to an

analog voltage where Aref

sets the full range

- Analog comparator

decides whether the DAC

output or input voltage is

the largest

3

Pin Assignment

4

Normal Conversion

 Takes 13 cycles

5

Accuracy

 Capacitor in S&H leaks and can therefore not hold a value for too long

 There exists a minimum sample speed/frequency

 Conversion logic takes time, so we cannot sample too fast

 There exists a maximum sample speed/frequency

 The faster you sample, you get a smaller number of accurate output bits (since the binary search
cannot completely finish)

 Noise: MCU produces up to 150mV line noise, there are other sources such as
electrical field, etc.

 Use capacitances close to the CPU to eliminate most of the inductance

6

Prescalar

 E.g., a prescalar of 128 gives 16MHz/128 = 125000 (between 50 and 200 kHz)

 To complete the binary search takes 13 cycles = 13/125000 = 104 micro seconds

 Gives 10 bits uncalibrated accuracy at a linear scale to Vref

 ADC clock is twice as fast as the cycle frequency; therefore the smallest prescalar must be >=2
7

ADMUX Register

8

ADMUX Register

9

0..7 indicate input pins ADC0 .. ADC7

ADMUX Register

10

ADLAR = Analog Data Left Adjust Register

For 8-bit conversion, set

ADLAR to 1 and read ADCH

If ADLAR is set to 0,

- read ADCL for low order bits, and

- until ADCH is read the ADC is

locked out

ADCSRA: ADC Status Register A

 Bit 7: ADEN – analog converter enable bit; set this bit to 1 if you want to do a
conversion

 Bit 6 ADSC – AD start conversion; if it is set to 1, then a conversion is started for you
and it is auto set back to 0 when done

 You can pull this bit and as soon as it is 0, you know the conversion is done

 Or you can pull the interrupt flag (or use the corresponding ISR if enabled):

 Bit 4: ADIF – AD interrupt flag; will be set when a conversion is done and will
trigger an interrupt if ADIE is set

 Warning: do not mess with this flag, e.g., use ADCSRA |= (1<<ADSC);

11

ADCSRA: ADC Status Register A

 Bit 3: ADIE – AD interrupt enable; if turned on, write the ISR to handle what
happens when conversion finishes

 Bit 5: ADATE – allows one out of 8 selected events to trigger the ADC converter
when coupled with the ADCSRB register

 Bits 0,1,2: prescalar (see previous slide)

12

ADCSRB

13

Example code ADC, no interrupt

14

// Borrowed from Bruce Land - Cornell University

// Performs single, left adjusted conversions and prints to UART

#include <inttypes.h>

#include <avr/io.h>

#include <avr/interrupt.h>

#include <stdio.h>

#include <stdlib.h>

#include <util/delay.h>

#include <math.h>

#include "uart.h"

volatile int Ain, AinLow;

volatile float Voltage;

char VoltageBuffer[6];

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

Example code ADC, no interrupt

15

void main(void)

{

DDRC &= 0x00; // PC1 = ADC1 is set as input

uart_init();

stdout = stdin = stderr = &uart_str;

// ADLAR set to 1  left adjusted result in ADCH

// MUX3:0 set to 0001  input voltage at ADC1

ADMUX = (1<<MUX0) | (1<<ADLAR);

// ADEN set to 1  enables the ADC circuitry

// ADPS2:0 set to 111  prescalar set to 128 (104us per conversion)

ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

// Start A to D conversion

ADCSRA |= (1<<ADSC);

fprintf(stdout,"\n\rStarting ADC demo...\n\r");

Takes more than 1ms, hence conversion

will finish which takes 104us

Example code ADC, no interrupt

16

while (1)

{

// Read from ADCH to get the 8 MSBs of the 10 bit conversion

Ain = ADCH;

// Typecast the volatile integer into floating type data, divide by maximum 8-bit value, and

// multiply by 5V for normalization

Voltage = (float)Ain/256.00 * 5.00;

//ADSC is cleared to 0 when a conversion completes. Set ADSC to 1 to begin a conversion.

ADCSRA |= (1<<ADSC);

// Write Voltage to string format and print (3 char string + “.” + 2 decimal places)

dtostrf(Voltage, 3, 2, VoltageBuffer);

fprintf(stdout,"%s\n\r",VoltageBuffer);

}

return 0;

}

Takes more than 1ms, hence conversion

will finish which takes 104us

Conversion needs to finish

 Conversion needs to finish before the next conversion is called

 Use a print statement

 Delay functionality (of at least 104us)

 while (!(ADCSRA & (1<<ADSC) == 0)) { }

 The most efficient solution

17

