
ECE3411 – Fall 2015

Syed Kamran Haider, Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut

Email: {syed.haider, vandijk}@engr.uconn.edu

Review Session

Lecture 4b.

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

 DDRx : Data-Direction Register for Port x

 Controls whether each pin is configured for input (0) or output (1).

 To enable a pin as output, a ‘1’ is written to that bit in DDRx.

 By default, all pins are initialized as inputs (DDRx = 0x00).

 PORTx : Port x Data Register

 Sets an output pin to logic HIGH (1) or LOW (0).

 E.g. writing a ‘1’ to a bit position in PORT register will produce logic HIGH at that pin & vice versa.

 PINx : Port x Input Pins Address

 Used to read the logic values of each pin that’s configured as input.

 E.g. a value ‘0’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

2

Debouncing of Bouncing Signals

 A button push results in a bouncy transition

 Due to physical limitations of the contact surfaces

 Bouncing is often very fast  orders of few 𝑢𝑠 to 𝑚𝑠

 Debouncing in software

 Key idea: Read  Wait  Verify

 Wait time needs to be carefully controlled

 E.g. wait time should be at least 300𝑢𝑠 for this example.

3

Software Debouncing State Machine

4

No_Push
Maybe

Pushed

Maybe

NotPushed
Pushed

Pushed?

NotPushed?

NotPushed?

Pushed?

Pushed?

Pushed?

NotPushed?

NotPushed?

LCD Data Write (4-bit Mode)

5

void LcdDataWrite(uint8_t da)

{

// First send higher 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4); //give the higher half of cm to DATA_PORT

CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay

// Send lower 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f); //give the lower half of cm to DATA_PORT

CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register

CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

_delay_ms(1); // allow the LCD controller to successfully read command in

CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

_delay_ms(1); // allow long enough delay

}

1

2

3

4

Blocking vs. Non Blocking LCD Write Timing

Time (ms)

Fu
nc

ti
o
ns

0

main

lcd_write

_delay_ms

Time (ms)

Fu
nc

ti
o
ns

0

main

lcd_write

Wasted Cycles Wasted Cycles

Saved Cycles Saved Cycles

Blocking Writes:

Non-Blocking Writes:

Interrupts & ISRs

A few questions:

 Who calls the ISR?

 Can you “pass” a variable to an ISR?

 What is the return value of an ISR?

 How does the AVR know where to find the code for the corresponding ISR?

7

Interrupts & ISRs

 Who calls the ISR?

 The hardware!

 Can you “pass” a variable to an ISR?

 No! The variable must be globally defined.

 What is the return value of an ISR?

 Nothing! However, it can store some value in a global variable.

 How does the AVR know where to find the code for the corresponding ISR?

 Through the Interrupt Vector Table.

8

ATmega328P Interrupt Vector Table

 The AVR knows what type of
interrupt has occurred.

 It jumps to the program address
specified in Interrupt Vector Table.

 E.g. Address 0x0002 for INT0

 There it sees another Jump
instruction which takes it to the ISR
code.

9

Execution of an ISR

10

Program Memory

JMP 0xFC04

Instruction

First Instruction

0x0002

0x4508

0xFC04

First Instruction0xFF08

Interrupt vector table

main()

ISR (INT0_vec)

ISR (INT1_vec)

JMP 0xFC080x0004

INT0_vec :

INT1_vec :

……

…
…

…
…

1

2

3

Timer 0

11

Divider

/1

/8

/64

/256

/1024

Clocked: Scaled

internal clock or

external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked

off Mux

T0 pin

Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Timer 0 Modes of Operation

 Normal Mode

 Timer counts up from 0

 Timer overflows at 0xFF (i.e. 255)

 Interrupt can be generated upon Overflow

 CTC Mode

 OCR0A is loaded with some value between 0 to 255

 Timer counts up from 0

 A compare match (kind of an overflow) occurs when TCNT0 = OCR0A

 Interrupt can be generated upon Compare Match

12

Timer 0 Mode Selection

13

Timer 0 Overflow Interrupt

14

Divider

/1

/8

/64

/256

/1024

Select

Prescaler=1

Mux
Clocked

off Mux

01242532542550

TCNT0

Overflow Occurred ISR (TIMER0_OVF_vect)

{

// Some Code

}

Enables

Overflow

Interrupt

Timer 0 Compare Match Interrupt

15

Divider

/1

/8

/64

/256

/1024

Select

Prescaler=1

Mux
Clocked

off Mux

01242472482490

TCNT0

ISR (TIMER0_COMPA_vect)

{

// Some Code

}

Enables

Compare_Match_A

Interrupt

HW Comparator “=“

249

OCR0A

Timer 1 Modes of Operation

 Normal Mode

 Timer counts up from 0

 Timer overflows at 0xFFFF (i.e. 65535)

 Interrupt can be generated upon Overflow

 CTC Mode

 OCR1A is loaded with some value between 0 to 65535

 Timer counts up from 0

 A compare match (kind of an overflow) occurs when TCNT1 = OCR1A

 Interrupt can be generated upon Compare Match

16

Timer 1 Mode Selection

17

Timer 1 Input Capture Interrupt

18

Source 1

PB0

Source 2

PD6, PD7

ISR (TIMER1_CAPT_vect)

{

// Some Code

}

// Hardware performs this

ICR1 = TCNT1;

External Interrupts

 External Interrupts INT0 & INT1

 Can detect any logic change in input pins PD2 and PD3 respectively

 Can also be configured to trigger by a falling or rising edge

 INT0 has the highest priority among all interrupts, then INT1and so on…

 Pin Change Interrupts PCINT23..0

 The pin change interrupt PCI0 will trigger if any enabled PCINT7..0 pin toggles

 The pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles

 The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

19

Configuring INT1

20

Configuring Pin Change Interrupts

21

Corresponding Pins:

PB0, PB1, PB2

