
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

ISRs, Timer0
Task Based Programming

Week 5: Lecture 1

Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

Timer 0

2

Timer 0

3

Divider

/1

/8

/64

Etc.

Clocked: Scaled

internal clock or

external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked

off Mux

T0 pin

Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Channels A and B

 TCNT0 and OCR0A are compared in HW, on equality:

 Can clear TCNT0

 Set interrupt flag (forces a HW event leading to possibly have the interrupt unit make the PC jump to
the corresponding ISR)

 Toggle an I/O line (Channel A), etc.

 TCNT0 and OCR0B are compared in HW, on equality as above

 Except clearing TCNT0 is not an option

 Channels A and B can be used for PWM (discussed in a couple of weeks)

4

TCCR0A, TCCR0B

5

WGM00, WGM01, WGM02  Waveform generation mode

CS00, CS01, CS02  Controls the rate of the Mux

TCCR0A, TCCR0B

6

Waveform Generation Mode sets autoclear on matching OCR0A if TCCR0A |= (1<<WGM01);

• TCNT0 increments to OCR0A, is reset back to 0, and starts incrementing again

• TCNT0 follows a sawtooth

Every increment of TCNT0 is clocked using F_CPU/prescaler

• E.g., for F_CPU = 1MHz, then after TCCR0B = 2; each TCNT0 increment takes 8/(1MHz) = 8 micro seconds

• For OCR0A = 124, TCNT0 transitions from 01, 12, …, 123124, 1240, each transition taking 8

micro second giving one full period of 125*8 micro seconds, i.e., 1ms

Enabling an ISR every period can be used to create a precise 1ms clock!

Building a SW 1ms clock from HW Timer 0

 TOIE0: timer 0 overflow interrupt enable

 OCIE0A: timer 0 output compare interrupt enable A

 Set TIMSK0 = 2;

 Program ISR(TIMER0_COMPA_vect) { SWTaskTimer++;}

 Initialize global variable volatile int SWTaskTimer=0;

 Now SWTaskTimer is a reliable clock which increments every 1ms !

 Suppose your task is to toggle a LED every 1/2 seconds (a 1Hz signal), then you can add in your
main while loop the instruction if (SWTaskTimer == 500) { LEDToggle(); SWTaskTimer == 0;}

 This avoids using the blocking delay functionality and allows other tasks to execute while waiting for
the next moment at which the MCU should toggle the LED again 7

Putting It Together: Task Based Programming

8

….

int TaskTime = 500;

volatile int SWTaskTimer=TaskTime;

ISR(TIMER0_COMPA_vect)

{

if (SWTaskTimer>0) {SWTaskTimer--;}

}

// 1ms ISR for Timer 0 assuming F_CPU = 1MHz

void InitTimer0(void)

{

TCCR0A |= (1<<WGM01);

OCR0A = 124;

TIMSK0 =2;

TCCR0B = 2; //Timer starts

}

….

int main(void)

{

…

InitTimer0();

…

sei(); // Enable global interrupt

while(1)

{

if (SWTaskTimer == 0)

{

Task();

SWTaskTimer == TaskTime;

}

}

return 0;

}

Using Prescalars

 E.g., can we use prescaler = 1 for a 1ms clock?

 Each TCNT0 increment takes 1/(1MHz) = 1 micro seconds

 1ms = 1000 TCNT0 increments  OCR0A must be equal to 1000-1=999

 Does not fit an 8-bit register/character!

 E.g., can we use prescalar 64 instead?

 Each TCNT0 increment takes 64/(1MHz) = 64 micro seconds

 1ms = 1ms / 64 us = 1000/64 = 15.625 TCNT0 increments

 OCR0A is an integer: it must be either 14 or 15, giving a 15*64 um = 0.96ms
period or a16*64 um = 1.024ms period

 SW clock is off by 2.4% (OCR0A=15 yields the least noise)

9

Performance Overhead Caused by ISR
 Current setting TCNT0 increments every 8um (prescalar set to 8) and ISR is triggered every

125 increments/ticks (our 1ms clock implementation)

 ISR takes 120 cycles = 120/1MHz = 120um = 120/8 ticks = 15 ticks  within one full
period of 125 ticks, 15 are used up for the ISR, 15/125 = 12% of the time (lots of
overhead)

 Can we do better?
 Do we need a 1ms SW counter or does our application allows something larger? E.g., if TaskTime = 500

ms then we can use a 0.5s SW counter! How do you now initialize Timer0 and what performance overhead
does this cost?

 Use higher clock speed: Can we scale the internal clock up to 8MHz? Or do we use an external clock of
say 16MHz? What do we have?

 Can we do worse? E.g., suppose we initialize Timer0 so that each period takes only 96um;
for 8um TCNT0 ticks, set OCR0A = 15. Since 96<120, the ISR is always busy and
incrementing at 120um (not at 96um):
 There is no real forward progress on the main code: a forced 1 instruction every 120um as if the MCU is

running at 4 cycles/ 120 micro second = 1/30 MHz!

 The software clock is completely off

10

Removing Blocking delay_ms()

 Task Based Programming shows how to remove delay_m() from the main while loop

 What about a procedure/task that uses delay_ms()?

 Suppose you create code which writes a 16 character string on each line: this takes
32 LCD_GoTO commands and 32 LCDDataWrites, each taking 4ms due to
delay_ms(1) delays  Takes 250ms

 During these 250ms nothing else happens, in particular, if you have a software
routine that adapts a PWM signal using the hardware timers, then this routine is
interrupted for 250ms.

 This means that the PWM signal remains unchanged for this period. If the LCD string
writes are programmed to happen every 1s you will hear clicks/glitches every 1s.

 Even if you write just 1 character every say 40ms, this will introduce a new
frequency of 25Hz (1000/40) to the spectrum of your PWM signal, which is in your
hearing range.

11

Removing Blocking delay_ms()

12

void TaskAB(inputAB)

{

CodeA;

delay_ms(WaitTime);

CodeB;

}

int main(void)

{ …

while(1)

{

if (CondAB)

{

TaskAB(InpAB);

ResetCondAB;

}

}

…

}

void TaskA(InpAB)

{

CodeA;

InputB = CaptureCurrentStateCodeA;

}

ISR(TIMER0_COMPA_vect)

{

if (TimerABWaiting>0 &&WaitingFor==B)

{ TimerABWaiting--; }

}

void TaskB(InpB)

{

RecoverStateEndOfCodeA(InpB);

CodeB;

}

int main(void)

{ …

while(1)

{

if (CondAB &&WaitingFor==A)

{

TaskA(InpAB);

WaitingFor = B;

TimerABWaiting ==WaitTime;

}

if (WaitingFor==B && TimerABWaiting==0)

{

TaskB(InpB);

WaitingFor = A;

ResetCondAB;

}

}

…

}

Serves as

“Busy Signal” and

“FSM state”

Multiple threads

may start to

interfere

Multiple Threads

 CodeA executes on InpAB and at the end captures it state in InpB

 While waiting for starting execution of CodeB (and resume from state InpB), which
takes WaitTime ms, the main while loop starts to execute CodeA again …

 Ouch: a new end state of CodeA is captured in InpB and overwrites the old one!

 The first call to “TaskAB” will never finish to completion and is essentially discarded.

 We need to remember a priority queue of states InpB for each call to “TaskAB” in
the main while loop  needs a pointer structure
 Ouch, what happens if the task consists of multiple code portions separated by delay_ms() commands

 What if the delay_ms() command is in a while loop or for loop …

 What if a task calls another task that has a delay_ms() operation …

 We need a smart queue which remembers all the states (like InpB) of all the procedures the main
while loop is waiting for; in addition it needs to remember what needs to execute in-order (according
to a priorty queue) and what can be executed in parallel ..

 Need an operating system (OS), a tiny one as we have limited storage in the MCU

13

