ECE3411 — Fall 2015
Week 5: Lecture 1

ISRs, Timer(
Task Based Programming

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UEUNN Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

Timer 0

Figure 14-1. 8-bit Timer/Counter Block Diagram

Count TOVn

Clear " (Int.Req.)
Control Logic
Direction g clk Clock Select

Edge
A Detector

A

Tn

YVYVY /\

‘ Timer/Counter A y (From Prescaler)
1—+{ TCNTn |
[=] [=0]

OCnA
(IntReq.)

i~
-
4 }

— Waveform »|0CnA
Generation

| OCRnA L ol bt

1
Fixed ocnB

TOP
v Value ’—’(Im.Req.)
- > Waveform oCnB

Generation

DATA BUS
—

| TCCRnA | | TCCRnB |

L !

Timer 0

TCCROB[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

S

Divider

/1

/8

/64 _j Mux

Etc. »

7'y

Clocked: Scaled TO pin
internal clock or ~ Port pin PD4

external clock

Clocked
off Mux

Bus
> TCNTO < 8 J
HW Comparator “=* >
1 Channel A
OCROA < 8 D>
HW Comparator “=* >
1 Channel B

OCROB -

(00}

Channels A and B

= TCNTO and OCROA are compared in HW, on equality:
* Can clear TCNTO

* Set interrupt flag (forces a HW event leading to possibly have the interrupt unit make the PC jump to
the corresponding ISR)

* Toggle an | /O line (Channel A), etc.

= TCNTO and OCROB are compared in HW, on equality as above
" Except clearing TCNTO is not an option

® Channels A and B can be used for PWM (discussed in a couple of weeks)

TCCROA, TCCROB

14.9.1 TCCROA - Timer/Counter Control Register A

Bit 7 6 5 4 3 2 1 0

ox24 (0x44) [[COMGAT_|_ComeAv | Cowost | cowomo |~]~] Wewor | wowoo] Teckoa
Read/Write R/W R R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

14.9.2 TCCROB — Timer/Counter Control Register B

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOCOA FOCOB | - | - | WGMO02 CS02 CS01 CS00 TCCROB
Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

WGMO00, WGMO1, WGMO02 > Waveform generation mode

CS00, CS01, CS02 = Controls the rate of the Mux

TCCROA. TCCROB

Table 14-8. Waveform Generation Mode Bit Description Table 14-9. Clock Select Bit Description
Timer/Counter Ccso02 Ccso01 CS00 | Description
Mode of Update of TOV Fla .
Mode | WGM02 | WGM01 | WGMOO | Operation ToP | OCRxat | Seton(® 0 0 0 | Noclock source (Timer/Counter stopped)
0 0 0 0 Normal OxFF | Immediate MAX /0/ 0 clkjo/(No prescaling)
0 1 0 Ik;;,o/8 (From prescaler
1 0 0 1 (F;WM' fhase OXFF TOP BOTTOM / uo/8 (From p)
orree 0 1 1 clk;o/64 (From prescaler)
2 ~—O0 1 CTC OCRA Immediate MAX \ 1 0 0 lky/256 (From prescaler)
3 0] 1 1 Fast PWM OxFF BOTTOM MAX \‘\ 0 clk,0/1024 (From prescaler)
4 1 0 0 Reserved - - - - ;
1 1 0 External clock source on TO pin. Clock on falling edge.
PWM, Phase
5 1 0 1 Correct OCRA ToP BOTTOM 1 1 1 External clock source on TO pin. Clock on rising edge.
6 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA BOTTOM TOP
Notes: 1. MAX = OxFF

2. BOTTOM = 0x00

Waveform Generation Mode sets autoclear on matching OCROA if TCCROA |= (1<<WGMO1);

* TCNTO increments to OCROA, is reset back to O, and starts incrementing again
* TCNTO follows a sawtooth

Every increment of TCNTO is clocked using F_CPU/prescaler

* E.g., for F_CPU = 1MHz, then after TCCROB = 2; each TCNTO increment takes 8 /(1MHz) = 8 micro seconds
* For OCROA = 124, TCNTO transitions from 021, 122, ..., 1232124, 1240, each transition taking 8

micro second giving one full period of 125%*8 micro seconds, i.e., Tms

Enabling an ISR every period can be used to create a precise 1ms clock!

Building a SW Tms clock from HW Timer 0

14.9.6 TIMSKO - Timer/Counter Interrupt Mask Register

Bit T 6 5 4 3 2 1 0
ooo [T - T -~ T — T ocww] ocion | Toko] mmsko
Read/Write R R R R R R/wW RW RW
Initial Value 0 0 0 0 0 0 0 0

= TOIEO: timer O overflow interrupt enable

= OCIEOA: timer O output compare interrupt enable A
= Set TIMSKO = 2;
* Program ISR(TIMERO_COMPA _vect) { SWTaskTimer++;}

* Initialize global variable volatile int SWTaskTimer=0;

= Now SWTaskTimer is a reliable clock which increments every Tms |

" Suppose your task is to toggle a LED every 1/2 seconds (a 1Hz signal), then you can add in your
main while loop the instruction if (SWTaskTimer == 500) { LEDToggle(); SWTaskTimer == 0;}

* This avoids using the blocking delay functionality and allows other tasks to execute while waiting for
the next moment at which the MCU should toggle the LED again 7

Putting It Together: Task Based Programming

int main(void)
int TaskTime = 500; {
volatile int SWTaskTimer=TaskTime;
InitTimerO();
ISR(TIMERO_COMPA_vect)
{ sei(); // Enable global interrupt
if (SWTaskTimer>0) {SWTaskTimer--;}
} while(1)
{
// 1ms ISR for Timer O assuming F_CPU = 1MHz if (SWTaskTimer == 0)
void InitTimerO(void) {
{ Task();
TCCROA | = (1<<WGMO01); SWrTaskTimer == TaskTime;
OCROA = 124; }
TIMSKO =2; }
TCCROB = 2; //Timer starts
} return O;
}

Using Prescalars

E.g., can we use prescaler = 1 for a 1ms clock?
Each TCNTO increment takes 1/(1MHz) = 1 micro seconds
Ims = 1000 TCNTO increments > OCROA must be equal to 1000-1=999

Does not fit an 8-bit register/character!

E.g., can we use prescalar 64 instead?
Each TCNTO increment takes 64 /(1MHz) = 64 micro seconds
Ims = Ims / 64 us = 1000/64 = 15.625 TCNTO increments

OCROA is an integer: it must be either 14 or 15, giving a 15%64 um = 0.96ms
period or a16*64 um = 1.024ms period

SW clock is off by 2.4% (OCROA=15 yields the least noise)

Performance Overhead Caused by ISR

Current setting TCNTO increments every 8um (prescalar set to 8) and ISR is triggered every
125 increments/ticks (our 1ms clock implementation)

ISR takes 120 cycles = 120/1MHz = 120um = 120/8 ticks = 15 ticks = within one full
period of 125 ticks, 15 are used up for the ISR, 15/125 = 12% of the time (lots of
overhead)

Can we do better?

* Do we need a 1ms SW counter or does our application allows something larger? E.g., if TaskTime = 500
ms then we can use a 0.5s SW counter! How do you now initialize TimerO and what performance overhead
does this cost?

* Use higher clock speed: Can we scale the internal clock up to 8 MHz2 Or do we use an external clock of
say 16MHz2 What do we have?

Can we do worse? E.g., suppose we initialize TimerO so that each period takes only 926um;
for 8um TCNTO ticks, set OCROA = 15. Since 96<120, the ISR is always busy and
incrementing at 120um (not at 26um):

* There is no real forward progress on the main code: a forced 1 instruction every 120um as if the MCU is
running at 4 cycles/ 120 micro second = 1/30 MHz!

* The software clock is completely off

Removing Blocking delay__ms()

Task Based Programming shows how to remove delay_m() from the main while loop
What about a procedure /task that uses delay_ms()?

Suppose you create code which writes a 16 character string on each line: this takes
32 LCD_GoTO commands and 32 LCDDataWrites, each taking 4ms due to
delay_ms(1) delays = Takes 250ms

During these 250ms nothing else happens, in particular, if you have a software
routine that adapts a PWM signal using the hardware timers, then this routine is
interrupted for 250ms.

This means that the PWM signal remains unchanged for this period. If the LCD string
writes are programmed to happen every 1s you will hear clicks/glitches every 1s.

Even if you write just 1 character every say 40ms, this will infroduce a new
frequency of 25Hz (1000/40) to the spectrum of your PWM signal, which is in your
hearing range.

Removing Blocking delay__ms()

void TaskAB(inputAB)

{
CodeA;

delay_ms(WaitTime);

CodeB;
}

int main(void)

{..
while(1)

{
if (CondAB)

{
TaskAB(InpAB);
ResetCondAB;

}
}

void TaskA(InpAB)

{
CodeA;

InputB = CaptureCurrentStateCodeA;

}

ISR(TIMERO_COMPA _vect)
{

if (TimerABWaiting>0 && WaitingFor==B)
{ TimerABWaiting--; }

}

void TaskB(InpB)

{
RecoverStateEndOfCodeA(InpB);

CodeB;

int main(void)

Serves as
{.. “Busy Signal” and
z"h"e() “FSM state”
if (CondAB && WaitingFor==A)
{
Task
Waiti

TimerABWaiting.== WaitTime;

Multiple threads
ResetCondAB; may start to

} interfere

}

Multiple Threads

CodeA executes on InpAB and at the end captures it state in InpB

While waiting for starting execution of CodeB (and resume from state InpB), which
takes WaitTime ms, the main while loop starts to execute CodeA again ...

Ouch: a new end state of CodeA is captured in InpB and overwrites the old one!
The first call to “TaskAB” will never finish to completion and is essentially discarded.

We need to remember a priority queue of states InpB for each call to “TaskAB” in
the main while loop > needs a pointer structure
Ouch, what happens if the task consists of multiple code portions separated by delay_ms() commands
What if the delay_ms() command is in a while loop or for loop ...
What if a task calls another task that has a delay_ms() operation ...

We need a smart queue which remembers all the states (like InpB) of all the procedures the main
while loop is waiting for; in addition it needs to remember what needs to execute in-order (according
to a priorty queue) and what can be executed in parallel ..

Need an operating system (OS), a tiny one as we have limited storage in the MCU

