
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

UART: Universal Asynchronous Receiver & Transmitter

Lecture 2a.

Based on the Atmega328P datasheet and material

from Bruce Land’s video lectures at Cornel

USART0 (Ch. 19 ATmega328P Datasheet)

 USART = Universal Synchronous
and Asynchronous serial Receiver
and Transmitter

 Clock generator, Transmitter,
Receiver

 Bolted on to the MCU

2

Control

registers

USART

3

2-level (i.e.,

buffered)

UDR0

UDR0

TX empty flag

(can throw interrupt)

Char. Received flag

(can throw interrupt)

Shift Reg.

Shift Reg.

Baud Clock

Baud Clock

Transmit Line (TX)

at D.1

Receive Line (RX)

at D.0

TX and RX at PORTD

4

USART

 USART communicates over a 3-wire cable: TX, RX, Gnd

 Designed for a mechanical printer, a long time ago; protocol is slow

 HW allows full-duplex, i.e., HW can transmit and receive at exactly the same time

 Need interrupt to utilize this in SW

 Baud rate in bits per second: 9600 Bd is approximately 0.1ms per bit

 This is slow: Therefore, in SW start transmitting a character, then do something else!

 In theory the Baud rate can be very large (1Mbit per second) but this can only be realized between
MCUs

 The used cable limits the maximum possible Baud rate

 Per bit the receiving clock makes 4 measurements and they all need to match: All,
e.g. 10, bits within a frame give 40 measurements that all need to match

 The Baud rates of the receiving and transmitting devices need to match within 1/40 = 2.5%

5

UBRR0H and UBRR0L

 Baud rate is translated relative to the system oscillator clock frequency f_OSC to
two registers UBRR0H and UBRR0L, the high and low value of UBRR0 which is in the
range [0,4095]

6

4 samples per bit

2 samples per bit

UBRR0H and UBRR0L

7

Frame Format

 To transmit a byte (i.e., one char) we need at least one start bit (receiving clock
starts when falling edge is received), 8 data bits, and one stop bit: Total of 10 bits.

8

UDR0 for Transmission and Receiving

9

(The receive and transmit buffers RXB and TXB are different in HW; in SW their names, i.e. I/O addresses, are the

same. The shared name UDR0 in read mode means that RXB is read, and UDR0 in write mode means that TXB is written.

Notice that reading and writing of bits in UDR0 can be done simultaneously since they affect different hardware

buffers!)

Control register: UCR0A

 RXC0: Receive character complete There is something in the receive register worth reading

 TXC0: Transmit character compare Is set when both entries in the Transmit Shift Register and Transmit
Buffer (UDR0) are shifted out Not very useful

 UDRE0: Transmit data empty Goes high when 1 of the two buffers (see above) is empty Time to
refill

 FE0: Frame error if 4 samples of a bit do not match Detects bad clock rate

 DOR0: Data overrun: If a new character is complete and RXC0 is still set, implies a lost char SW did
not read often enough

10

Control register: UCR0A

 UPE0: Parity error

 U2X0: Double speed (twice the baud rate) reduces error checking (only 2 samples per bit)

 MPCM0: Multiple processor address mode (can connect more than 2 devices to the line)

11

Control register: UCSR0B

12

 RXCIE0: Receive character complete interrupt enable You can write an ISR for this

 TXCIE0: Enables interrupt for both members in TX queue being empty

 UDRIE0: Enables interrupt if the first of the output pipeline is empty

 RXEN0: RX enable Disables D.0 for general I/O (completely overrides any other I/O)

 TXEN0: TX enable Disables D.1 for general I/O (completely overrides any other I/O)

 UCSZ02: see next slides

Multiprocessor Stuff

Control register: UCSR0C

13

Control register: UCSR0C

14

Default: Frames of 10 bits.

Initialization

15

#define F_CPU 16000000UL

#define BAUD 9600

#define MYUBRR F_CPU/16/BAUD-1

int main()

{

…

UART_Init(MYUBRR);

…

}

/* Function Body */

void UART_Init(unsigned int ubrr)

{

UBRR0H = (unsigned char) (ubrr>>8);

UBRR0L = (unsigned char) ubrr;

UCSR0B = (1<<RXEN0) | (1<<TXEN0);

}

Transmission (19.6.1 datasheet & uart.c)

16

int uart_putchar(char c, FILE *stream)

{

/* Alarm (Beep, Bell) */

if (c == '\a')

{

fputs("*ring*\n", stderr);

return 0;

}

/* Newline is translated into a Carriage Return */

if (c == '\n') {uart_putchar('\r', stream); return 0;}

/* In uart.c: loop_until_bit_is_set(UCSR0A, UDRE0); */

while (!(UCSR0A & (1<<UDRE0))) ;

UDR0 = c;

return 0;

}

/* avr/io.h implements useful macros besides defining

* names for bit positions, registers like DDx (or do we

* use DDRx?) etc.

*/

#define _BV(bit) (1 << (bit))

#define bit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))

#define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))

#define loop_until_bit_is_set(sfr, bit)

do { } while (bit_is_clear(sfr, bit))

#define loop_until_bit_is_clear(sfr, bit)

do { } while (bit_is_set(sfr, bit))

Receiving

 int uart_getchar(FILE *stream) in uart.c is a simple line-editor that allows to delete
and re-edit the characters entered, until either CR or NL is entered

 printable characters entered will be echoed using uart_putchar()

 So you can see the character received by the MCU and you can verify whether the transmission was
without error if you recognize the character as the transmitted one (as pressed by the keyboard)

 The core part in uart_getchar is

17

int uart_getchar(FILE *stream)

{

…

while (!(UCSR0A & (1<<RXC0))) ;

c = UDR0;

…

uart_putchar(c, stream);

…

}

ASCII Table

18

Using uart.c

19

#include "uart.h“

…

FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

…

int main(void)

{

uart_init(); // Initialize UART

stdout = stdin = stderr = &uart_str; // Set File outputs to point to UART stream

….

// Can use fprintf and fscanf anywhere: here or in subroutines

…

return 0;

}

