
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Introduction to Microcontrollers
General Purpose Digital Output

Lecture 1b.

A Personal Computer

2

Slide from Sung Yeul Park

A Microcontroller

 A Microcontroller contains a processor core, memory and other peripherals on a
single chip.

3
Slide from Sung Yeul Park

Microcontroller Structure

4
Slide from Sung Yeul Park

Atmega328P Xplained Mini Kit

 The ATmega328P Xplained Mini evaluation board
provides a development platform for the Atmel
ATmega328P Microcontroller.

 Target Microcontroller: ATmega328P

 On-board Programming & Debugging capability
using Atmel Studio

 Programmer Microcontroller: ATmega32U4

 USB connectivity

 Headers & Connectors for accessing target
microcontroller’s I/O pins

5

ATmega328P

ATmega32U4

ATmega328P Features (1)
 High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller

 Advanced RISC Architecture
 131 Powerful Instructions – Most Single Clock Cycle Execution

 32 x 8 General Purpose Working Registers

 Fully Static Operation

 Up to 20 MIPS Throughput at 20MHz

 On-chip 2-cycle Multiplier

 High Endurance Non-volatile Memory Segments
 32KBytes of In-System Self-Programmable Flash program memory

 1K Byte EEPROM

 2K Bytes Internal SRAM

 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

 Data retention: 20 years at 85°C/100 years at 25°C
 Optional Boot Code Section with Independent Lock Bits

 In-System Programming by On-chip Boot Program

 True Read-While-Write Operation

 Programming Lock for Software Security

6

ATmega328P Features (2)

 Peripheral Features

 Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode

 Real Time Counter with Separate Oscillator

 Six PWM Channels

 8-channel 10-bit ADC with Temperature Measurement

 Programmable Serial USART

 Master/Slave SPI Serial Interface

 Byte-oriented 2-wire Serial Interface (Phillips I2C compatible)

 Programmable Watchdog Timer with Separate On-chip Oscillator

 On-chip Analog Comparator

 Interrupt and Wake-up on Pin Change

7

ATmega328P Features (3)
 Special Microcontroller Features

 Power-on Reset and Programmable Brown-out Detection

 Internal Calibrated Oscillator

 External and Internal Interrupt Sources

 Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby

 Unique Device ID

 I/O and Packages
 23 Programmable I/O Lines

 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

 Operating Voltage: 1.8 - 5.5V

 Temperature Range: -40°C to 85°C

 Speed Grade: 0 - 20MHz @ 1.8 - 5.5V

 Power Consumption at 1MHz, 1.8V, 25°C
 Active Mode: 0.2mA

 Power-down Mode: 0.1μA

 Power-save Mode: 0.75μA (Including 32kHz RTC)

8

AVR Software Development Process

9

Preprocessor

Compiler

Assembler

Link Editor

Source Code

Executable

Code

Assembly Code

Object Code
Libraries

Programmer

Target

Microcontroller

Atmel

Studio
ATmega328P

Xplained Mini

ATmega328P

10

Register & Port

 Register

 A collection of flip-flops

 Simultaneously loaded (written) in parallel or read

 Interface between users and subsystems

 Viewed as a software configurable switch

11

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

An 8-bit wide Register

 Port

 A Port in AVR Microcontrollers represents a bank of pins.

 A port provides an interface between the central processing unit and the internal and external
hardware and software components.

 E.g. PORTB, PORTC, PORTD etc.

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

 DDRx : Data-Direction Register for Port x

 Controls whether each pin is configured for input or output.

 By default, all pins are configured as inputs.

 E.g. to enable a pin as output, a ‘1’ is written to its slot in the DDRx.

 PORTx : Port x Data Register

 When the DDRx bits are set to ‘1’ (output) for a given pin, the PORT register controls whether that pin
is set to logic high or low.

 E.g. writing a ‘1’ to a bit position in PORT register will produce VCC voltage at that pin & vice versa.

 PINx : Port x Input Pins Address

 The PIN register addresses are used to read the digital voltage values for each pin that’s configured
as input.

 E.g. a value ‘0’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

12

Examples of Predefined Registers

 AVR library has some predefined register names for each port.

 E.g. for Port B, the registers are DDRB, PORTB, and PINB

 These registers can be thought of as regular variables

 You can read their values in your code

 You can write values to these registers (except PINx register)

 AVR library also has predefined keywords for each bit position of each port
register

 E.g. for 7th bit position of PINB register, the predefined keyword is PINB7

 Similarly PORTB5 represents 5th bit position of PORTB register

 Notice that the keywords for bit positions are constants

 They simply define the bit number, not the bit value. E.g. PORTB5 = 5

 These keywords are read-only, you cannot write any value to them.

13

Bit Masking Operations

 Bit masking operations allow us to modify a single bit in a register

 Let’s say you want to modify bit 𝑖 in a register called BYTE = 0b01100000

 To Set 𝑖𝑡ℎ bit  BYTE|= (1 << 𝑖);
 E.g. if 𝑖 = 4 then

BYTE |= (1 << 𝑖)  BYTE = 0b01100000 | 0b00010000 = 0b01110000

 To Clear 𝑖𝑡ℎ bit  BYTE &= ~(1 << 𝑖);
 E.g. if 𝑖 = 6 then

BYTE &= ~(1 << 𝑖)  BYTE = 0b01110000 & ~(0b01000000)

BYTE = 0b01110000 & 0b10111111 = 0b00110000

 To Toggle 𝑖𝑡ℎ bit  BYTE ^= (1 << i);

 E.g. if 𝑖 = 1 then

BYTE |= (1 << 𝑖)  BYTE = 0b00110000 ^ 0b00000010 = 0b00110010

14

The Structure of AVR C Code

15

 The preamble is where you include information
from other files, define global variables, and
define functions.

 main() is where the AVR starts executing the
code when the power first goes on.

 Any configurations, e.g. configuring I/O pins
etc., are done in main() before the while(1)
loop.

 while(1) loop represents the core functionality
of the program. It keeps on executing
whatever is in the loop body forever (or as
long as the AVR is powered).

[preamble & includes]

[possibly some function definitions]

int main(void){

[chip initializations]

while(1) {

[do this stuff forever]

}

return(0);

}

A Simple Test Program

On Xplained Mini kit,

 LED is connected to 5th pin of
Port B

 Switch is connected to 7th pin of
Port B

(!(EXPRESSION)) means
(EXPRESSION == 0)

 Values for PINB & (1 <<PINB7)
are 0=0b00000000 or
128=0b10000000

16

#include <avr/io.h>

int main(void)

{

//configure LED pin as output

DDRB |= 1<<DDRB5;

while(1){

/* check the button status (press - 0 , release - 1) */

if(!(PINB & (1<<PINB7))) {

/* switch off (0) the LED until key is pressed */

PORTB &= ~(1<<PORTB5);

}

else {

/* switch on (1) the LED*/

PORTB |= 1<<PORTB5;

}

}

}

The Delay Library
 AVR supports a delay library to introduce delay between the execution of two code

statements.
 <util/delay.h> header file needs to be included in the code

 The delay library provides two functions
 _delay_us(x) for introducing a delay of x microseconds

 _delay_ms(x) for introducing a delay of x milliseconds

 <util/delay.h> library needs to know the Microcontroller’s clock frequency for accurate
time measurements
 Clock frequency is defined by defining F_CPU in the code

 Xplained Mini kit runs the ATmega169PB on 16MHz frequency
 #define F_CPU 16000000UL is included in the code to define the frequency for the delay library

 Only use delay functionality in order to define access functionality for e.g. LCD screen which
requires precise timing sequences:
 Never use delay functionality in your main program

 We want to do other useful computation while waiting

17

Test Program to Blink LED

18

// ------- Preamble -------- //

#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */

#include <avr/io.h> /* Defines pins, ports etc. */

#include <util/delay.h> /* Functions to waste time */

int main(void) {

// -------- Inits --------- //

/* Data Direction Register B: writing a one to the bit enables output. */

DDRB |= (1 << DDRB5);

// ------ Event loop ------ //

while (1) {

PORTB = 0b00100000; /* Turn on the LED bit/pin in PORTB */

_delay_ms(1000); /* wait for 1 second */

PORTB = 0b00000000; /* Turn off all B pins, including LED */

_delay_ms(1000); /* wait for 1 second */

} /* End event loop */

return (0); /* This line is never reached */

}

