
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Introduction to Microcontrollers
General Purpose Digital Output

Lecture 1b.

A Personal Computer

2

Slide from Sung Yeul Park

A Microcontroller

 A Microcontroller contains a processor core, memory and other peripherals on a
single chip.

3
Slide from Sung Yeul Park

Microcontroller Structure

4
Slide from Sung Yeul Park

Atmega328P Xplained Mini Kit

 The ATmega328P Xplained Mini evaluation board
provides a development platform for the Atmel
ATmega328P Microcontroller.

 Target Microcontroller: ATmega328P

 On-board Programming & Debugging capability
using Atmel Studio

 Programmer Microcontroller: ATmega32U4

 USB connectivity

 Headers & Connectors for accessing target
microcontroller’s I/O pins

5

ATmega328P

ATmega32U4

ATmega328P Features (1)
 High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller

 Advanced RISC Architecture
 131 Powerful Instructions – Most Single Clock Cycle Execution

 32 x 8 General Purpose Working Registers

 Fully Static Operation

 Up to 20 MIPS Throughput at 20MHz

 On-chip 2-cycle Multiplier

 High Endurance Non-volatile Memory Segments
 32KBytes of In-System Self-Programmable Flash program memory

 1K Byte EEPROM

 2K Bytes Internal SRAM

 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

 Data retention: 20 years at 85°C/100 years at 25°C
 Optional Boot Code Section with Independent Lock Bits

 In-System Programming by On-chip Boot Program

 True Read-While-Write Operation

 Programming Lock for Software Security

6

ATmega328P Features (2)

 Peripheral Features

 Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode

 Real Time Counter with Separate Oscillator

 Six PWM Channels

 8-channel 10-bit ADC with Temperature Measurement

 Programmable Serial USART

 Master/Slave SPI Serial Interface

 Byte-oriented 2-wire Serial Interface (Phillips I2C compatible)

 Programmable Watchdog Timer with Separate On-chip Oscillator

 On-chip Analog Comparator

 Interrupt and Wake-up on Pin Change

7

ATmega328P Features (3)
 Special Microcontroller Features

 Power-on Reset and Programmable Brown-out Detection

 Internal Calibrated Oscillator

 External and Internal Interrupt Sources

 Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby

 Unique Device ID

 I/O and Packages
 23 Programmable I/O Lines

 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

 Operating Voltage: 1.8 - 5.5V

 Temperature Range: -40°C to 85°C

 Speed Grade: 0 - 20MHz @ 1.8 - 5.5V

 Power Consumption at 1MHz, 1.8V, 25°C
 Active Mode: 0.2mA

 Power-down Mode: 0.1μA

 Power-save Mode: 0.75μA (Including 32kHz RTC)

8

AVR Software Development Process

9

Preprocessor

Compiler

Assembler

Link Editor

Source Code

Executable

Code

Assembly Code

Object Code
Libraries

Programmer

Target

Microcontroller

Atmel

Studio
ATmega328P

Xplained Mini

ATmega328P

10

Register & Port

 Register

 A collection of flip-flops

 Simultaneously loaded (written) in parallel or read

 Interface between users and subsystems

 Viewed as a software configurable switch

11

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

An 8-bit wide Register

 Port

 A Port in AVR Microcontrollers represents a bank of pins.

 A port provides an interface between the central processing unit and the internal and external
hardware and software components.

 E.g. PORTB, PORTC, PORTD etc.

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

 DDRx : Data-Direction Register for Port x

 Controls whether each pin is configured for input or output.

 By default, all pins are configured as inputs.

 E.g. to enable a pin as output, a ‘1’ is written to its slot in the DDRx.

 PORTx : Port x Data Register

 When the DDRx bits are set to ‘1’ (output) for a given pin, the PORT register controls whether that pin
is set to logic high or low.

 E.g. writing a ‘1’ to a bit position in PORT register will produce VCC voltage at that pin & vice versa.

 PINx : Port x Input Pins Address

 The PIN register addresses are used to read the digital voltage values for each pin that’s configured
as input.

 E.g. a value ‘0’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

12

Examples of Predefined Registers

 AVR library has some predefined register names for each port.

 E.g. for Port B, the registers are DDRB, PORTB, and PINB

 These registers can be thought of as regular variables

 You can read their values in your code

 You can write values to these registers (except PINx register)

 AVR library also has predefined keywords for each bit position of each port
register

 E.g. for 7th bit position of PINB register, the predefined keyword is PINB7

 Similarly PORTB5 represents 5th bit position of PORTB register

 Notice that the keywords for bit positions are constants

 They simply define the bit number, not the bit value. E.g. PORTB5 = 5

 These keywords are read-only, you cannot write any value to them.

13

Bit Masking Operations

 Bit masking operations allow us to modify a single bit in a register

 Let’s say you want to modify bit 𝑖 in a register called BYTE = 0b01100000

 To Set 𝑖𝑡ℎ bit BYTE|= (1 << 𝑖);
 E.g. if 𝑖 = 4 then

BYTE |= (1 << 𝑖) BYTE = 0b01100000 | 0b00010000 = 0b01110000

 To Clear 𝑖𝑡ℎ bit BYTE &= ~(1 << 𝑖);
 E.g. if 𝑖 = 6 then

BYTE &= ~(1 << 𝑖) BYTE = 0b01110000 & ~(0b01000000)

BYTE = 0b01110000 & 0b10111111 = 0b00110000

 To Toggle 𝑖𝑡ℎ bit BYTE ^= (1 << i);

 E.g. if 𝑖 = 1 then

BYTE |= (1 << 𝑖) BYTE = 0b00110000 ^ 0b00000010 = 0b00110010

14

The Structure of AVR C Code

15

 The preamble is where you include information
from other files, define global variables, and
define functions.

 main() is where the AVR starts executing the
code when the power first goes on.

 Any configurations, e.g. configuring I/O pins
etc., are done in main() before the while(1)
loop.

 while(1) loop represents the core functionality
of the program. It keeps on executing
whatever is in the loop body forever (or as
long as the AVR is powered).

[preamble & includes]

[possibly some function definitions]

int main(void){

[chip initializations]

while(1) {

[do this stuff forever]

}

return(0);

}

A Simple Test Program

On Xplained Mini kit,

 LED is connected to 5th pin of
Port B

 Switch is connected to 7th pin of
Port B

(!(EXPRESSION)) means
(EXPRESSION == 0)

 Values for PINB & (1 <<PINB7)
are 0=0b00000000 or
128=0b10000000

16

#include <avr/io.h>

int main(void)

{

//configure LED pin as output

DDRB |= 1<<DDRB5;

while(1){

/* check the button status (press - 0 , release - 1) */

if(!(PINB & (1<<PINB7))) {

/* switch off (0) the LED until key is pressed */

PORTB &= ~(1<<PORTB5);

}

else {

/* switch on (1) the LED*/

PORTB |= 1<<PORTB5;

}

}

}

The Delay Library
 AVR supports a delay library to introduce delay between the execution of two code

statements.
 <util/delay.h> header file needs to be included in the code

 The delay library provides two functions
 _delay_us(x) for introducing a delay of x microseconds

 _delay_ms(x) for introducing a delay of x milliseconds

 <util/delay.h> library needs to know the Microcontroller’s clock frequency for accurate
time measurements
 Clock frequency is defined by defining F_CPU in the code

 Xplained Mini kit runs the ATmega169PB on 16MHz frequency
 #define F_CPU 16000000UL is included in the code to define the frequency for the delay library

 Only use delay functionality in order to define access functionality for e.g. LCD screen which
requires precise timing sequences:
 Never use delay functionality in your main program

 We want to do other useful computation while waiting

17

Test Program to Blink LED

18

// ------- Preamble -------- //

#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */

#include <avr/io.h> /* Defines pins, ports etc. */

#include <util/delay.h> /* Functions to waste time */

int main(void) {

// -------- Inits --------- //

/* Data Direction Register B: writing a one to the bit enables output. */

DDRB |= (1 << DDRB5);

// ------ Event loop ------ //

while (1) {

PORTB = 0b00100000; /* Turn on the LED bit/pin in PORTB */

_delay_ms(1000); /* wait for 1 second */

PORTB = 0b00000000; /* Turn off all B pins, including LED */

_delay_ms(1000); /* wait for 1 second */

} /* End event loop */

return (0); /* This line is never reached */

}

