ECE3411 — Fall 2015

Lecture 1b.

Introduction to Microcontrollers
General Purpose Digital Qutput

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UCONN

A Personal Computer

Memory Bus

gle Intel Dual Core Screen Saver

Peripheral Bus
L N N NN

Ethernet Voice MP3 Music

Slide from Sung Yeul Park

A Microcontroller

= A Microcontroller contains a processor core, memory and other peripherals on a
single chip.

Memory Bus

Timer/Counter
(Screen Saver

Peripheral Bus

Processor core

Communicationjg Digital In g Analogue In Analogue Out

(Ethernet) (USB) (Voice) (MP3 Music)

Slide from Sung Yeul Park

Microcontroller Structure

Slide from Sung Yeul Park

Atmega328P Xplained Mini Kit

The ATmega328P Xplained Mini evaluation board

provides a development platform for the Atmel
ATmega328P Microcontroller.

Target Microcontroller: ATmega328P

On-board Programming & Debugging capability
using Atmel Studio

* Programmer Microcontroller: ATmega32U4

VIN GND GND 5V 3V3 RST VCC NC

0000000

USB connectivity

Headers & Connectors for accessing target
$ ofll|0-0 0-0°

microcontroller’s 1/O pins : olmjo-0 0-0- mu
° Orl|0-© ©-0<

GND GND O-O i

vCcC

[ATmega328P

ATmega328P Features (1)

= High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller

= Advanced RISC Architecture

* 131 Powerful Instructions — Most Single Clock Cycle Execution
* 32 x 8 General Purpose Working Registers
* Fully Static Operation
* Up to 20 MIPS Throughput at 20MHz
* On-chip 2-cycle Multiplier

= High Endurance Non-volatile Memory Segments
= 32KBytes of In-System Self-Programmable Flash program memory
* 1K Byte EEPROM
= 2K Bytes Internal SRAM
* Write /Erase Cycles: 10,000 Flash/100,000 EEPROM
* Data retention: 20 years at 85°C/100 years at 25°C
= Optional Boot Code Section with Independent Lock Bits
* In-System Programming by On-chip Boot Program
* True Read-While-Write Operation
* Programming Lock for Software Security

ATmega328P Features (2)

= Peripheral Features
* Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
* 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
* Real Time Counter with Separate Oscillator
= Six PWM Channels
* 8-channel 10-bit ADC with Temperature Measurement
* Programmable Serial USART
* Master/Slave SPI Serial Interface
* Byte-oriented 2-wire Serial Interface (Phillips 12C compatible)
* Programmable Watchdog Timer with Separate On-chip Oscillator
* On-chip Analog Comparator
* Interrupt and Wake-up on Pin Change

ATmega328P Features (3)

Special Microcontroller Features
* Power-on Reset and Programmable Brown-out Detection

* Internal Calibrated Oscillator

= External and Internal Interrupt Sources

= Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
* Unique Device ID

/O and Packages
= 23 Programmable 1/O Lines
* 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

Operating Voltage: 1.8 - 5.5V
Temperature Range: -40°C to 85°C
Speed Grade: 0 - 20MHz @ 1.8 - 5.5V

Power Consumption at 1MHz, 1.8V, 25°C
* Active Mode: 0.2mA

* Power-down Mode: 0.1pA

* Power-save Mode: 0.75pA (Including 32kHz RTC)

AVR Software Development Process

Source Code

Atmel
Studio Preprocessor
Compiler
Assembly Code
Assembler
Libraries

Object Code

Executable
Code

Link Editor

ATmega328P
Xplained Mini

Programmer

Target
Microcontroller

ATmega328P

) .
EE o
Z Z =
OO =
g O
=3 e
0 O 2
=) O
<< o Lo o?
— o Q0O WO QO w
VDoOUoZxo=>o
o< Q< < =<0
Ao monm
\ <+ O N T O O o0 I~
M (0LINIOd/fZoaY) 20d 0S¢ r——-—-—-—-—-—--- 7 91 [O¥49d (OSIN/FLNIOC)
w (LLINIDd/£DaY) £0d [92 " “ 51 [1€9d (ISOW/NZOO/ELNIDD)
o (ZLINIDd/Yas/#oav) ¥od [22 | . vl [O2ad (d100/SSZLNIDd)
12 (eLINIDAMOS/50aY) Sod 8z | | £} [p18d (VLOO/LLNIOd)
_.|__| (FLLNIDJ/L3STH) 90d [62 “ , c¢k[doad (LdDI/OMTD/0LNIDd)
= (9LLNIOd/axy) odd C]og | I 1} [12ad (LNIV/SZLNIO)
o~ (ZLINIDJ/AXL) bad] e ! | 01 [190d (ONIV/Y0DO0/2ZLNIOd)
® (8LLNIDd/OLNI) Zad] 2¢ @ ||||||||| 6 [150ad (1 1/9000/LZ1NIDd)
/ — N o= WD O M~ D .m
OO OO0Oon0od =]
YT o000 9~ =)
8385888 :
cE 5 5
: 2 3 :
2R EE 5
Q9 -9 2
o g = o
3z & & 3
E O 3 = 2
=z = = 0
o - z Z o
= g8 :
== =
[=]
=
=]
[an]

10

Register & Port

" Register
" A collection of flip-flops

= Simultaneously loaded (written) in parallel or read
* Interface between users and subsystems

" Viewed as a software configurable switch

An 8-bit wide Register
bit7/ | bité | bit5 | bit4 | bit3 | bit2 | bitl | bitO

* Port
* A Port in AVR Microcontrollers represents a bank of pins.

= A port provides an interface between the central processing unit and the internal and external
hardware and software components.

* E.g. PORTB, PORTC, PORTD etc.

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

DDRXx : Data-Direction Register for Port x
Controls whether each pin is configured for input or output.
By default, all pins are configured as inputs.

E.g. to enable a pin as output, a ‘1’ is written to its slot in the DDRx.

PORTXx : Port x Data Register

When the DDRx bits are set to ‘1’ (output) for a given pin, the PORT register controls whether that pin
is set to logic high or low.

E.g. writing a ‘1’ to a bit position in PORT register will produce VCC voltage at that pin & vice versa.

PINX : Port x Input Pins Address

The PIN register addresses are used to read the digital voltage values for each pin that’s configured
as input.

E.g. a value ‘O’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

Examples of Predefined Registers

AVR library has some predefined register names for each port.
E.g. for Port B, the registers are DDRB, PORTB, and PINB

These registers can be thought of as regular variables

You can read their values in your code

You can write values to these registers (except PINx register)

AVR library also has predefined keywords for each bit position of each port
register

E.g. for 7" bit position of PINB register, the predefined keyword is PINB7
Similarly PORTBS represents 5™ bit position of PORTB register

Notice that the keywords for bit positions are constants
They simply define the bit number, not the bit value. E.g. PORTB5 = 5

These keywords are read-only, you cannot write any value to them.

Bit Masking Operations

Bit masking operations allow us to modify a single bit in a register

Let’s say you want to modify bit i in a register called BYTE =

To Set it bit > BYTE | = (1 << i);
= E.g.if i = 4 then
BYTE |= (1 << i) > BYTE = 0 | = 1
To Clear it" bit > BYTE &= ~(1 << i);
= E.g.if i = 6 then
BYTE &= ~(1 << i) - BYTE = 1 & ~()
BYTE = 1 & = 0]
To Toggle it" bit > BYTEA= (1 << i);

= E.g.if i = 1 then
BYTE |= (1 << i) -> BYTE = 00~ =

The Structure of AVR C Code

[preamble & includes] * The preamble is where you include information
[possibly some function definitions] from other files, define global variables, and
int main(void){ define functions.

[chip initializations]

while(1) { * main() is where the AVR starts executing the

[do this stuff forever] code when the power first goes on.

zefurn()i = Any configurations, e.g. configuring |/O pins

} etc., are done in main() before the while(1)
loop.

= while(1) loop represents the core functionality
of the program. It keeps on executing
whatever is in the loop body forever (or as
long as the AVR is powered).

A Simple Test Program

#include <avr/io.h>
int main(void)
{
/ /configure LED pin as output
DDRB |= 1<<DDRBS5;
while(1){
/* check the button status (press - O, release - 1) */
if(1 PINB & (1<<PINB7))) {
/* switch off (0) the LED until key is pressed */
PORTB &= ~(1<<PORTBS5);
}
else {
/* switch on (1) the LED*/
PORTB |= 1<<PORTBS5;

}
}
}

On Xplained Mini kit,

= LED is connected to 5™ pin of
Port B

= Switch is connected to 7" pin of
Port B

(H{EXPRESSION)) means
(EXPRESSION == 0)

* Values for PINB & (1 <<PINB7)
are 0=0b00000000 or
128=0b10000000

The Delay Library

AVR supports a delay library to introduce delay between the execution of two code
statements.

= <util /delay.h> header file needs to be included in the code

The delay library provides two functions
* _delay_us(x) for introducing a delay of x microseconds

* _delay_ms(x) for introducing a delay of x milliseconds

<util /delay.h> library needs to know the Microcontroller’s clock frequency for accurate
time measurements

* Clock frequency is defined by defining F_CPU in the code

Xplained Mini kit runs the ATmegal69PB on 16MHz frequency
= Hdefine F_CPU 16000000UL is included in the code to define the frequency for the delay library

Only use delay functionality in order to define access functionality for e.g. LCD screen which
requires precise timing sequences:

" Never use delay functionality in your main program

" We want to do other useful computation while waiting

Test Program to Blink LED

/] —=-me- Preamble -------- //
#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */

#include <avr/io.h> /* Defines pins, ports etc. */
#include <util/delay.h> /* Functions to waste time */
int main(void) {

[/ =mmmee- Inits --------- //

/* Data Direction Register B: writing a one to the bit enables output. */
DDRB | = (1 << DDRBS5);

/) === Event loop ------ //

while (1) {
PORTB = 0b00100000; /* Turn on the LED bit/pin in PORTB */
_delay_ms(1000); /* wait for 1 second */
PORTB = 0b00000000; /* Turn off all B pins, including LED */
_delay_ms(1000); /* wait for 1 second */

} /* End event loop */

return (0); /* This line is never reached */

