
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

I2C: Inter Integrated Circuit

Lab 7b.

With the help of:

ATmega328P Datasheet

I2C: Inter Integrated Circuit
 Also known as Two Wire Interface (TWI)

 Allows up to 128 different devices to be connected using only two bi-directional bus lines,
one for clock (SCL) and one for data (SDA).

 A pull-up resistor (typically 10 kΩ) is needed for each of the TWI bus lines.

 All devices connected to the bus have individual addresses.

2

10 kΩ10 kΩ

I2C Terminologies

 I2C (TWI) protocol allows several devices (up to 128) to be connected.

 Each device is identified by a configurable 7-bit address.

 Each device can communicate with any other device

 The transmitter address the receiver by its 7-bit address.

3

I2C START and STOP Conditions

 START and STOP conditions are signaled by changing the level of the SDA line when
the SCL line is high.

 When a new START condition is issued between a START and STOP condition, this is
referred to as a REPEATED START condition

4

I2C Address Packet Format

 All address packets transmitted on the TWI bus are 9 bits long:

 7 address bits, one READ/WRITE control bit and an acknowledge bit.

 When a Slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle.

 The Master can then transmit a STOP condition, or a REPEATED START condition to
initiate a new transmission.

5

I2C Data Packet Format

 All data packets transmitted on the TWI bus are 9 bits long:

 One data byte and one acknowledge bit.

 An Acknowledge (ACK) is signaled by the Receiver pulling the SDA line low during
the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is signaled.

6

I2C Bus Arbitration
 Arbitration is carried out by all masters continuously monitoring the SDA line after outputting

data.

 If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration.

7

A typical I2C Transmission

8

A typical I2C Transmission Summary

 When the TWI has finished an operation and expects application response, the
TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.

 When the TWINT Flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the
value to be transmitted in the next bus cycle.

 After all TWI Register updates and other pending application software tasks have
been completed, TWCR is written. When writing TWCR, the TWINT bit should be
set.

 Writing a one to TWINT clears the flag. The TWI will then commence executing
whatever operation was specified by the TWCR setting.

9

I2C Transmission Example

10

uint8_t TWI_Master_Transmit(uint8_t Address, uint8_t Data)

{

TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN); // Send START condition

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != START) // Check value of TWI Status Register.

ERROR();

TWDR = (Address << 1) | (WRITE); // Load SLA_W (Slave Address & Write) into TWDR Register.

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit in TWCR to start transmission of address.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != MT_SLA_ACK) // Check value of TWI Status Register.

ERROR();

TWDR = Data; // Load DATA into TWDR Register.

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit in TWCR to start transmission of data.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != MT_DATA_ACK) // Check value of TWI Status Register.

ERROR();

TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO); // Transmit STOP condition.

}

Note: The code above assumes that several definitions have been made, for example by using include-files.

I2C Reception Example

11

uint8_t TWI_Slave_Receive(void)

{

TWCR = (1<<TWEA)|(1<<TWEN); // Enable TWI & Acknowledgements.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set (once this slave is addressed)

if ((TWSR & 0xF8) != 0x60) // Check value of TWI Status Register.

ERROR();

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit start reception of data.

while (!(TWCR & (1<<TWINT))); // Wait for TWINT Flag set.

if ((TWSR & 0xF8) != 0x80) // Check if Data has been received & ACK has been returned

ERROR();

TWCR = (1<<TWINT) | (1<<TWEN); // Clear TWINT bit.

return TWDR; // Read TWDR Register.

}

Note: The code above assumes that several definitions have been made, for example by using include-files.

void TWI_Slave_Initialize(uint8_t Address)

{

TWAR = (Address << 1)|(1); // Load Slave Address into TWAR Register.

TWCR = (1<<TWEA)|(1<<TWEN); // Enable TWI & Acknowledgements.

}

Task1: I2C Master Slave Communication
Write a program to send ADC voltage readings to your friend’s board over I2C bus.

 Configure your board as I2C Master (fSCL = 200kHz) and ask your friend to configure his as I2C
Slave.

 Make proper wire connections of SCK and SDA pins between the two boards.
Don’t forget to put a 10 kΩ pullup resister on each line.

 In Master MCU, read a potentiometer’s voltage through ADC every 100ms (only upper 8 bits).

 Transmit Master’s voltage value every 100ms.

 For Master, print the transmitted reading on UART.

 For Slave, print the received reading on UART.

Homework: Use I2C interrupts on both Master and Slave sides for non-blocking I2C
implementation.

12

