
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

Context Switching &
Task Scheduling

Lab 6b.

With the help of:

www.wikipedia.org

www.freertos.org

http://www.wikipedia.org/
http://www.freertos.org/

Execution Context

 As a task executes it utilizes the
processor registers and accesses RAM.

 These resources together comprise the
task execution context. In particular;

 The Program Counter (PC)

 The Status Register (SREG)

 Processor’s general purpose registers (R0 - R31)

 The Stack Pointer

2

Saving the Context

 Each task has its own stack memory area. So the context can be saved by simply
pushing processor registers onto the task stack.

3

#define portSAVE_CONTEXT() \

asm volatile (\

"push r0 \n\t" \

"in r0, __SREG__ \n\t" \

"cli \n\t" \

"push r0 \n\t" \

"push r1 \n\t" \

"clr r1 \n\t" \

"push r2 \n\t" \

"push r3 \n\t" \

"push r4 \n\t" \

…

…

"push r29 \n\t" \

"push r30 \n\t" \

"push r31 \n\t" \

"lds r26, Current_SP_ptr \n\t" \

"lds r27, Current_SP_ptr + 1 \n\t" \

"in r0, __SP_L__ \n\t" \

"st x+, r0 \n\t" \

"in r0, __SP_H__ \n\t" \

"st x+, r0 \n\t" \

);

Saving the Context
Referring to the source code on the last slide:

 Processor register R0 is saved first as it is used when the status register is saved, and must be
saved with its original value.

 The status register is moved into R0 (2) so it can be saved onto the stack (4).

 Processor interrupts are disabled (3). If portSAVE_CONTEXT() was only called from within an ISR
there would be no need to explicitly disable interrupts as the AVR will have already done so. As
the portSAVE_CONTEXT() macro is also used outside of interrupt service routines (when a task
suspends itself) interrupts must be explicitly cleared as early as possible.

 The code generated by the compiler from the ISR C source code assumes R1 is set to zero. The
original value of R1 is saved (5) before R1 is cleared (6).

 Between (7) and (8) all remaining processor registers are saved in numerical order.

 The stack of the task being suspended now contains a copy of the tasks execution context. The
kernel stores the tasks stack pointer so the context can be retrieved and restored when the task is
resumed. The X processor register is loaded with the address to which the stack pointer is to be
saved (8 and 9).

 The stack pointer is saved, first the low byte (10 and 11), then the high nibble (12 and 13).

4

Restoring the Context
 The context of the task being resumed was previously stored in the tasks stack.

 The kernel retrieves the stack pointer for the task then POPs the context back into the correct processor
registers.

5

#define portRESTORE_CONTEXT() \

asm volatile (\

"lds r26, Current_SP_ptr \n\t" \

"lds r27, Current_SP_ptr + 1 \n\t" \

"ld r28, x+ \n\t" \

"out __SP_L__, r28 \n\t" \

"ld r29, x+ \n\t" \

"out __SP_H__, r29 \n\t" \

"pop r31 \n\t" \

"pop r30 \n\t" \

"pop r29 \n\t" \

"pop r28 \n\t" \

"pop r27 \n\t" \

…

…

"pop r4 \n\t" \

"pop r3 \n\t" \

"pop r2 \n\t" \

"pop r1 \n\t" \

"pop r0 \n\t" \

"out __SREG__, r0 \n\t" \

"pop r0 \n\t" \

);

Timer1 ISR: The Scheduler Task

6

/* Interrupt service routine for the RTOS tick. */

ISR(TIMER1_COMPA_vect, ISR_NAKED)

{

/* This is a naked ISR so the context is saved. */

portSAVE_CONTEXT();

/* Store the current Stack Pointer in TCB_Array to retrieve it later */

TCB_Array[_current_task].stack_pointer = Current_SP;

/* Switch to Kernel's Stack for Scheduling Computation */

Current_SP = _kernel_TCB.stack_pointer;

portSET_SP();

/* Call the tick function. */

vPortYieldFromTick();

/* Store Kernel's latest Stack pointer */

portREAD_SP();

_kernel_TCB.stack_pointer = Current_SP;

/* Retrieve the Stack Pointer of Next task */

Current_SP = TCB_Array[_current_task].stack_pointer;

/* Restore the context. If a context switch has occurred this will restore the context of the task being resumed. */

portRESTORE_CONTEXT();

/* Return from the interrupt. If a context switch has occurred this will return to a different task. */

asm volatile ("reti");

}

Helper Scheduler Functions

7

void vPortYieldFromTick(void)

{

/* Increment the tick count and check to see if the new tick value has caused a delay period to expire.

This function call can cause a task to become ready to run. */

vTaskIncrementTick();

/* See if a context switch is required. Switch to the context of a task made ready to run by

vTaskIncrementTick() if it has a priority higher than the interrupted task. */

vTaskSwitchContext();

}

void vTaskSwitchContext()

{

/********* Scheduling Policy **********/

// Round Robin Scheduling

Scheduler_Round_Robin();

/***************************************/

}

Initializing the Kernel & Registering Tasks

8

int main(void)

{

initialize_all();

/* Initialize the Kernel here */

/* void Initialize_kernel(int num_tasks, double tick_resolution) */

/* Arguments:

num_tasks: Max number of tasks you want to schedule

tick_resolution: Time quantum (in sec) after which scheduling policy should trigger

*/

Initialize_kernel(2, SCHEDULING_QUANTUM);

/* Register Tasks */

/* void RegisterTask(double task_period, void* task_function) */

/* Arguments:

task_period: Task Period (in secs). 0 for non-periodic tasks

task_function: Pointer to the task's function

*/

RegisterTask(1, (void*) &task1);

RegisterTask(1, (void*) &task2);

/* Function to starts the tasks. This gives control to the scheduler. */

Run_tasks();

while(1); /* This loop is never entered anyway. */

}

Task1: Round Robin Scheduling

Download the folder W12_Lab1_files.zip.

A simple OS kernel is provided to you which implements Round Robin Scheduling.

You have the following tasks to do:

 Initialize the kernel in the given project with different values of
SCHEDULING_QUANTUM and observe the behavior of the output printed on UART.

 Change the delay inside task1() and task2() and observe the behavior of the output
printed on UART.

 Why do you sometimes see “Task1” and/or “Task2” being misprinted?

9

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ih2gd7kbpzw5

Task2: Rate Monotonic Scheduling

Implement a new function called Scheduler_Rate_Monotonic() in kernel.h that implements
Rate Monotonic Scheduling.

 Remove the while(1) loop from task1() and task2() such that both these functions print
“Task1”/”Task2” just once.

 Register task1 with a period of 100ms.

 Register task1 with a period of 300ms.

 Set SCHEDULING_QUANTUM to be 50ms.

 In vTaskSwitchContext() function, replace Scheduler_Round_Robin() with
Scheduler_Rate_Monotonic()

 How does the output printed on UART look like now?

 What happens if you register more tasks with periods lower than 100ms?

10

