ECE3411 — Fall 2015
Lab 6b.

Context Switching &
Task Scheduling

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

With the help of:

UEUNN www.wikipedia.org

www.freertos.org

http://www.wikipedia.org/
http://www.freertos.org/

Execution Context

= As a task executes it utilizes the el
i Execution Context
processor registers and accesses RAM. |Execution Lonte

|
' |
| Stack |
. General Purpose

!
* These resources together comprise the | Registers |
task execution context. In particular; ' [Rro |
|
* The Program Counter (PC) : R1 |
|
= The Status Register (SREG) : |
- |
" Processor’s general purpose registers (RO - R31) ' R25 Status |
) ' SREG |
* The Stack Pointer I TR26[XL] I
I Program Counter I
: R27[XH] T |
|

|
| R28[YL] Stack Pointer :
: R29[YH] SPH || spPL " |
|
| [R30izL] oL |
|
| [Rat(zH] [oxee |||
|

Saving the Context

* Each task has its own stack memory area. So the context can be saved by simply
pushing processor registers onto the task stack.

#define portSAVE_CONTEXT() \

asm volatile (\
"push rO \n\t" \
"in rO, _SREG__ \n\t" \
"cli \n\t" \
"push rO \n\t" \
"push r1 \n\t" \
"er rl \n\t" \
"push r2 \n\t" \
"push r3 \n\t" \
"push r4 \n\t" \
"push r29 \n\t" \
"push r30 \n\t" \
"push r31 \n\t" \
"Ids r26, Current_SP_ptr \n\t" \
"Ids r27, Current_SP_ptr + 1 \n\t" \
“in r0, _SP_L__ \n\t" \
"st x+,r0 \n\t" \
"in r0, _SP_H__ A\t \
"st x+,r0 \n\t" \
)i

Saving the Context

Referring to the source code on the last slide:

Processor register RO is saved first as it is used when the status register is saved, and must be
saved with its original value.

The status register is moved into RO (2) so it can be saved onto the stack (4).

Processor interrupts are disabled (3). If portSAVE_CONTEXT() was only called from within an ISR
there would be no need to explicitly disable interrupts as the AVR will have already done so. As
the portSAVE_CONTEXT() macro is also used outside of interrupt service routines (when a task
suspends itself) interrupts must be explicitly cleared as early as possible.

The code generated by the compiler from the ISR C source code assumes R1 is set to zero. The
original value of R1 is saved (5) before R1 is cleared (6).

Between (7) and (8) all remaining processor registers are saved in numerical order.

The stack of the task being suspended now contains a copy of the tasks execution context. The
kernel stores the tasks stack pointer so the context can be retrieved and restored when the task is

resumed. The X processor register is loaded with the address to which the stack pointer is to be
saved (8 and 9).

The stack pointer is saved, first the low byte (10 and 11), then the high nibble (12 and 13).

Restoring the Context

* The context of the task being resumed was previously stored in the tasks stack.

= The kernel retrieves the stack pointer for the task then POPs the context back into the correct processor
registers.

#define portRESTORE_CONTEXT|() \

asm volatile (\

"Ids r26, Current_SP_ptr \n\t" \
"Ids r27, Current_SP_ptr + 1 \n\t" \
"Id r28, x+ \n\t" \
"out __SP_L__,r28 \n\t" \
"Id r29, x+ \n\t" \
"out __SP_H__,r29 \n\t" \
"pop r31 \n\t" \
"pop r30 \n\t" \
"pop r29 \n\t" \
"pop r28 \n\t" \
"pop r27 \n\t" \
"pop r4 \n\t" \
"pop r3 A\t \
"pop r2 An\t" \
"pop r1 An\t" \
"pop r0 \n\t" \
"out _ SREG__, r0 \n\t" \
"pop r0 \n\t" \
)i

Timer1 ISR: The Scheduler Task

/* Interrupt service routine for the RTOS tick. */

ISR(TIMER1_COMPA _vect, ISR_NAKED)

{
/* This is a naked ISR so the context is saved. */
portSAVE_CONTEXT();
/* Store the current Stack Pointer in TCB_Array to retrieve it later */
TCB_Array[_current_task].stack_pointer = Current_SP;

/* Switch to Kernel's Stack for Scheduling Computation */
Current_SP = _kernel_TCB.stack_pointer;
portSET_SP();

/* Call the tick function. */
vPortYieldFromTick();

/* Store Kernel's latest Stack pointer */
portREAD_SP();
_kernel_TCB.stack_pointer = Current_SP;

/* Retrieve the Stack Pointer of Next task */
Current_SP = TCB_Array[_current_task].stack_pointer;

/* Restore the context. If a context switch has occurred this will restore the context of the task being resumed. */
portRESTORE_CONTEXT();

/* Return from the interrupt. If a context switch has occurred this will return to a different task. */
asm volatile ("reti");

Helper Scheduler Functions

void vPortYieldFromTick(void)

{

}

/* Increment the tick count and check to see if the new tick value has caused a delay period to expire.
This function call can cause a task to become ready to run. */
vTaskincrementTick();

/* See if a context switch is required. Switch to the context of a task made ready to run by
vTasklncrementTick() if it has a priority higher than the interrupted task. */
vTaskSwitchContext();

void vTaskSwitchContext()

{

/********* SChedU“ng PO“CY **********/
// Round Robin Scheduling
Scheduler_Round_Robin();

/***************************************/

Initializing the Kernel & Registering Tasks

int main(void)

{

initialize_all();

/* Initialize the Kernel here */
/* void Initialize_kernel(int num_tasks, double tick_resolution) */
/* Arguments:
num_tasks: Max number of tasks you want to schedule
tick_resolution: Time quantum (in sec) after which scheduling policy should trigger
*
/
Initialize_kernel(2, SCHEDULING_QUANTUM);

/* Register Tasks */

/* void RegisterTask(double task_period, void* task_function) */

/* Arguments:
task_period: Task Period (in secs). O for non-periodic tasks
task_function: Pointer to the task's function

*/

RegisterTask(1, (void*) &task1);

RegisterTask(1, (void*) &task2);

/* Function to starts the tasks. This gives control to the scheduler. */
Run_tasks();
while(1); /* This loop is never entered anyway. */

Task1: Round Robin Scheduling

Download the folder W12 Labl1 files.zip.

A simple OS kernel is provided to you which implements Round Robin Scheduling.
You have the following tasks to do:

* Initialize the kernel in the given project with different values of
SCHEDULING_QUANTUM and observe the behavior of the output printed on UART.

*= Change the delay inside task1() and task2() and observe the behavior of the output
printed on UART.

" Why do you sometimes see “Task1” and/or “Task2” being misprinted?

http://www.piazza.com/class_profile/get_resource/idhg4rqfhcm1uh/ih2gd7kbpzw5

Task2: Rate Monotonic Scheduling

Implement a new function called Scheduler_Rate_Monotonic() in kernel.h that implements
Rate Monotonic Scheduling.

Remove the while(1) loop from task1() and task2() such that both these functions print
“Task1” /"Task2” just once.

Register task1 with a period of 100ms.
Register task1 with a period of 300ms.
Set SCHEDULING _QUANTUM to be 50ms.

In vTaskSwitchContext() function, replace Scheduler_Round_Robin() with
Scheduler_Rate_Monotonic()

How does the output printed on UART look like now?

What happens if you register more tasks with periods lower than 100ms?

