ECE3411 — Fall 2015
Lab 3a.

General Purpose Digital Input (Debouncing)
Non-Blocking UART (using ISRs)

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UCONN

Recap

In the last lab, we implemented the following:

" Reading a Non-Debounced Switch

* MCU may see a lot of glitches in the input from a Non-Debounced switch

" Reading a Debounced Switch

= 3-state Debounce State Machine filters out glitches, but not all of them!

= Display some results on LCD

Do you see any problems with this
Debounce State Machine?

No Yes

Yes Yes: PushFlag = 1;

State: NoPush State: MaybePush State: Pushed

Check: button push? Check: button push?

— —

No: PushFlag =0; No

Check: button push?

* This state machine filters out glitches which result in NoPush = MaybePush = NoPush transitions
* What happens if a glitch causes Pushed = MaybePush = Pushed transitions sequence?

* The software mistakenly thinks that a new button-push has occurred
* Fix this problem in Task 1 of this lab

Push Switch to use

‘@

N

7’

» K
e ..
I--
- I..
- - ey~ - -
- - .b.
- » 2] - -
- - ~: £
- - *10[0-0 0-0% G = = o .
» . ’p"/ltf ¢ P——— -
- - e e v 3 U . .
|= P2 ATmega166P8 e . - . = »
U- .- .. p
- - ...
.b .- .w »
- e el .- e »
-3 Ol - -
~; L p
e - ~3 B TR 2
oot '“‘ - - L
o - - -
e - .. - -
ol - “ . -
-ne L - -
- .. . - -
e - -
- - " - - .. o
L L
- - -
.
-~ L3 PEE) -
.. .-
R -
.. ..
AR L L
' abcde fgt

Switch 2

LCD Interfacing

* We are going to use the LCD in 4-bit mode

* Only 4 data wires are required instead of 8

= LCD pin assignment is as follows:

No. Symbol Connections with ATmega328P
1,3 Veor Vie GND

2 Vee 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DBO-DB3 Not Connected

11-14 DB4-DB7 PCO-PC3

‘ PinT: Vi

»

b | Pin2: Vee
L./ Pin3: Vi,
| Pind: RS
LJ Pin5: R/W
"‘ Pin6: E

LJ Pin7: DBO
gol| Pin8: DB1
gd| PinS: DB2
'ﬁ‘ Pin10: DB3
- Pin11:DB4
gl Pin12: DB5
g Pin1 3: DB6
bd| Pin14: DB7

Pin16: Pin15:
ANODE CATHODE
S 5v > GND 5

- GND

> 5v
> GND
> pC4
> GND
> PC5
> N/C
> N/C
> N/C
> N/C
> PCO
> PCI
> pC2
> PC3

LCD Test Program

YA Preamble -------- //
#define F_CPU 16000000UL

#include <avr/io.h>
#include <util/delay.h>
#include "lcd_lib.h"

int main(void) {

/] ==mmmnne Inits --------- //

initialize_LCD();

LcdDataWrite('A');
LcdDataWrite('B');
LcdDataWrite(‘C');

/] ===-- Event loop ------ //
while (1) {

/* Nothing to do */
} /* End event loop */
return (0);

/* Tells the Clock Freq to the Compiler. */
/* Defines pins, ports etc. */
/* Functions to waste time */

/* LCD Library */

/* Initialize LCD */

/* Print a few characters for test */

Task 1: Extending the Debounce State Machine &
LED Frequency Toggling

Extend the 3-State Debounce State Machine such that the transition from the
state Pushed = Maybe 2 Pushed is not considered a new button push
This eliminates the possible errors of the 3-State Debounce State Machine

Use this extended debounce state machine to toggle the LED blinking

frequency (Lab2b: Task1) using the switch

Each button push should toggle the LED blinking frequency between 2Hz and 8Hz. (So, no
matter the duration of the button push, a single button push should toggle the frequency

only once.)
Also print the frequency of the current mode on LCD

Task 2: Non-Blocking UART Reads

Modify the LED frequency switching task (Lab2b: Task3) such that the UART reads
are non-blocking. In other words, the LED should keep blinking when the user is
asked if he wants to change the LED frequency.

Use UART interrupt service routine to receive the characters in a buffer (as shown in the lecture)

Implement Task_InterpretReadBuffer() function to:
Properly handle the frequency switching
Display the current frequency on LCD

