
ECE3411 – Fall 2015

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering

University of Connecticut

Email: {vandijk, syed.haider}@engr.uconn.edu

General Purpose Digital Input (Debouncing)
Non-Blocking UART (using ISRs)

Lab 3a.



Recap

In the last lab, we implemented the following:

 Reading a Non-Debounced Switch

 MCU may see a lot of glitches in the input from a Non-Debounced switch

 Reading a Debounced Switch

 3-state Debounce State Machine filters out glitches, but not all of them!

 Display some results on LCD

2



Do you see any problems with this 
Debounce State Machine?

3

State: NoPush

Check: button push?

State: MaybePush

Check: button push?

State: Pushed

Check: button push?

Yes Yes: PushFlag = 1;

NoNo: PushFlag =0;

No Yes

• This state machine filters out glitches which result in NoPush  MaybePush  NoPush transitions

• What happens if a glitch causes Pushed  MaybePush  Pushed transitions sequence?
• The software mistakenly thinks that a new button-push has occurred

• Fix this problem in Task 1 of this lab



Push Switch to use

4

Switch 2



LCD Interfacing

 We are going to use the LCD in 4-bit mode

 Only 4 data wires are required instead of 8

 LCD pin assignment is as follows:

5

No. Symbol Connections with ATmega328P

1, 3 VSS, VEE GND

2 VCC 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DB0-DB3 Not Connected

11-14 DB4-DB7 PC0-PC3

Pin1: VSS  GND

Pin2: VCC  5V
Pin3: VEE  GND
Pin4: RS  PC4
Pin5: R/W  GND
Pin6: E  PC5

Pin7: DB0  N/C
Pin8: DB1  N/C
Pin9: DB2  N/C
Pin10: DB3  N/C
Pin11: DB4  PC0
Pin12: DB5  PC1

Pin13: DB6  PC2
Pin14: DB7  PC3

Pin15:

CATHODE 

 GND

Pin16: 

ANODE 

 5V



LCD Test Program

6

// ------- Preamble -------- //

#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */

#include <avr/io.h> /* Defines pins, ports etc. */

#include <util/delay.h> /* Functions to waste time */

#include "lcd_lib.h" /* LCD Library */

int main(void) {

// -------- Inits --------- //

initialize_LCD(); /* Initialize LCD */

LcdDataWrite('A'); /* Print a few characters for test */

LcdDataWrite('B');

LcdDataWrite(‘C');

// ------ Event loop ------ //

while (1) {

/* Nothing to do */

} /* End event loop */

return (0);

}



Task 1: Extending the Debounce State Machine & 
LED Frequency Toggling

 Extend the 3-State Debounce State Machine such that the transition from the 
state Pushed  Maybe  Pushed is not considered a new button push

 This eliminates the possible errors of the 3-State Debounce State Machine

 Use this extended debounce state machine to toggle the LED blinking 
frequency (Lab2b: Task1) using the switch

 Each button push should toggle the LED blinking frequency between 2Hz and 8Hz. (So, no 
matter the duration of the button push, a single button push should toggle the frequency 
only once.)

 Also print the frequency of the current mode on LCD

7



Task 2: Non-Blocking UART Reads

 Modify the LED frequency switching task (Lab2b: Task3) such that the UART reads 
are non-blocking. In other words, the LED should keep blinking when the user is 
asked if he wants to change the LED frequency.

 Use UART interrupt service routine to receive the characters in a buffer (as shown in the lecture)

 Implement Task_InterpretReadBuffer() function to:

 Properly handle the frequency switching

 Display the current frequency on LCD

8


