
CSE 5095 & ECE 6095 – Spring 2016 – Instructor Marten van Dijk

Chenglu Jin
Department of Electrical & Computer Engineering

University of Connecticut

Email: chenglu.jin@.uconn.edu

Side Channel Attacks

Based on and extracted from Nickolai Zeldovitch, Computer System

Security, course material at http://css.csail.mit.edu/6.858/2014/

With help from Marten van Dijk

http://css.csail.mit.edu/6.858/2014/

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

2

Introduction

 In cryptography, a side-channel attack is an attack based on information gained
from the physical implementation of a cryptosystem, rather than brute force or
theoretical weaknesses in the algorithms (compare cryptanalysis).

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic Emission channel

3

https://en.wikipedia.org/wiki/Side-channel_attack

Timing Side Channel

The computation time depends on the value of

secret data, so one can uncover the secret by timing

the execution of a particular operation.

4Paul Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems”. Crypto’96

Cache Timing Channel

Different secret data can lead to different data

access pattern (cache hit or cache miss), and cache

hit and miss has a huge timing difference.

Therefore, one can extract the secret by observing

the access time of each cache access.

5

Daniel J. Bernstein. “Cache-timing attacks on AES”. 2005

Power Channel

6

Paul Kocher, Joshua Jaffe and Benjamin Jun. ”Differential Power Analysis”. Crypto’99

The power consumption of a chip depends on the secret data that is computing on the chip. One is able to

uncover the secret data by measuring the power consumption of the entire chip.

EM Radiation Channel

7

EM radiation depends on the secret data that is being processed.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electromagnetic Analysis: Concrete Results”. CHES’01

Acoustic Channel

Acoustic frequency from different motherboard

components leak information about the instructions

performed by the target’s CPU

8
Daniel Genkin, Adi Shamir and Eran Tromer. “RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis”. CRYPTO’14

Photonic Emission Channel

9

Photonic emission pattern is data dependent, so it can also be used to extract the secret data.

Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic and Jean-Pierre Seifert. “Simple Photonic Emission Analysis of AES Photonic Side Channel Analysis for the Rest of Us”.

CHES’12

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

10

Timing Attack on RSA

 This paper demonstrates an attack to reconstruct private key of RSA over the
network.

11
David Brumleya and Dan Boneh, “Remote timing attacks are practical”. Computer Networks’05.

RSA Background

 RSA: parameters

 1. Pick two random primes, p and q. Let n = p*q. A reasonable key length, i.e., |n|,
is 2048 bits today.

 2. Euler's function phi(n) = (p-1) * (q-1)

 For all a and n, aphi(n) = 1 mod n

 Encryption: c = me mod n

 Decryption: m = cd mod n

 e is public key and d is private key, such that me*d mod n = m

 By using phi(n) function and extended Euclidean algorithm, we can easily compute d
from e.

12

Preneel, Bart and Paar, Christof and Pelzl, Jan. “Understanding cryptography: a textbook for students and practitioners”. Springer 2009

Problems of Plain RSA

 Ciphertexts are multiplicative

 E(a)*E(b) = ae * be = (ab)e

 RSA is deterministic encryption

 Ciphertext of the same plaintexts are the same.

 Solution:

 Padding: take plaintext message bits, add padding bits before and after plaintext. Padding bits
introduce randomness into encryption.

13

Bellare M, Rogaway P. Optimal asymmetric encryption EUROCRYPT'94

Optimal Asymmetric Encryption Padding

14

a.k.a. OAEP

To encode,

1. messages are padded with k1 zeros to be n − k0 bits

in length.

2. r is a randomly generated k0-bit string

3. G expands the k0 bits of r to n − k0 bits.

X = m00..0 ⊕ G(r)

4. H reduces the n − k0 bits of X to k0 bits.

Y = r ⊕ H(X)

5. The output is X || Y where X is shown in the diagram

as the leftmost block and Y as the rightmost block.

To decode,

1. recover the random string as r = Y ⊕ H(X)

2. recover the message as m00..0 = X ⊕ G(r)

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

RSA implementation

 Key problem: fast modular exponentiation.

 In general, quadratic complexity.

 Multiplying two 1024-bit number is slow

 Computing the modulus for 1024-bit numbers is slow. (1024-‐bit division).

15

Optimization 1

 How to do modular exponentiation of a large number efficiently?

 Short answer: split it into two smaller numbers

 Chinese Remainder Theorem:

 First, Compute m1 = cd (mod p), and m2 = cd (mod q).

 Then, Compute m = q cp m1 + p cq m2 mod n

 Where cp = q-1 mod p, cq = p-1 mod q

 It has 2x speedup.

 Shorter modular exponentiation in the first step

 Only modular multiplication and addition in second step

16

Preneel, Bart and Paar, Christof and Pelzl, Jan. “Understanding cryptography: a textbook for students and practitioners”. Springer 2009

Optimization 2

 How to do modular exponentiation efficiently?

 Short answer: repeated squaring

 Example: we want to compute a16

 1. Do 15 multiplications

 2. Do 4 squaring ((((a)2)2)2)2) = as

17

Optimization 2

 Repeated squaring and Sliding windows

18

If we consider more than one consecutive bits in k in each

iteration, we call it sliding window.

e.g. if kiki+1 = 3, then square twice and multiply with g3

To compute gK

Optimization 3
 How to do modular operation efficiently?

 Short answer: avoid division, only use multiplication and subtraction

 Montgomery representation: multiply everything by some factor R.

 a mod q <-> aR mod q

 b mod q <-> bR mod q

 c = a*b mod q <-> cR mod q = (aR * bR)/R mod q =
 (aR mod q) * (bR mod q) * R-1 mod q.

 Additional division by R should be very cheap, either shifting or multiplying with precomputed R-1
. (E.g. R =

2n)

 Example:

 N = 17, R = 100, R-1 = 8. The Montgomery forms of 3, 5, 7, and 15 are 300 mod 17 = 11, 500 mod 17 =
7, 700 mod 17 = 3, and 1500 mod 17 = 4.

 Montgomery forms of 7 and 15 modulo 17 is the product of 3 and 4, which is 12.

 12 * R-1 mod N = 12 * 8 mod 17 = 11 (Montgomery form of 3)

19

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

Extra reduction

 One remaining problem: result (aR * bR) /R will be < R, but might be > q.

 Requires subtraction of q. This is called extra reduction.

 Pr[extra reduction] = (x mod q) / 2R, when we compute xd mod q

 Notice: If extra reduction happens, the computation costs more time. This timing leaks
information.

20

Optimization 4
 How to do multiplication efficiently?

 Short answer: select an efficient multiplier on the fly

 Two options: pair-wise multiplier and Karatsuba multiplier

 First , split two 512-bit numbers into 32-bit components.

 Second, select one multiplication from two different multiplications: pair-wise multiplication vs
Karatsuba multiplication

 Pair-wise:
 Requires O(nm) time if two numbers have n and m components respectively

 O(n2) if the two numbers are close

 Karatsuba:
 Requires O(n1.585) time

 In the implementation, the software selects the most efficient multiplication to compute
according to the values of n and m.

21
Notice: selection of multipliers leaks information.

https://en.wikipedia.org/wiki/Karatsuba_algorithm

The big picture of RSA Decryption

22

Construction of attack vectors

 Let q = q0 q1 .. qN, where N = |q|

 Assume we know some number j of high-order bits of q (q0 to qj)

 Construct two approximations of q, guessing qj+1 is either 0 or 1:

 g = q0q1…qj 0 0 … 0 0

 ghi = q0q1…qj 1 0 … 0 0

 Trigger the decryption gd and ghi
d. (Padding is checked after decryption)

 Two cases:

 qj+1 = 0 => g < q < ghi: time(gd) and time(ghi
d) have noticeably difference

 ghi mod q is small

 Less time: fewer extra reductions

 More time: switch from Karatsuba to pair-wise multiplication

 qj+1 = 1 => g < ghi < q: time(gd) and time(ghi
d) have no much difference

23

Evaluation

24
Zero-one gap (Tg – Tghi) for three different keys

Effect of extra

reduction.

Evaluation

25
Zero-one gap (Tg – Tghi) for three different keys

What if the two

effects are

canceled out?

Neighborhood Size

For every bit of g we measure the decryption time for a neighborhood of values g;
g+1; g+2; :::; g+n. We denote this neighborhood size by n.

26

Effect of increased neigh. size

27

Countermeasures

 RSA blinding

 Choose random r when decryption

 Randomize c’ = c * re mod n

 Multiplicative property of RSA => the decrypted result
is m’ = m * r

 m = m’ /r

 Constant execution time

 Montgomery Ladder

 Disallow the access to the precise timer

 Attacker may still be able to figure out the information
from throughput.

28

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

Demo

 For demo purpose:

 p =97, q = 103, e = 31. N = p *q = 92391

 Private key: d = 7

29

https://github.com/stoutbeard/crypto

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

30

Cache side channel attacks

 Data present in caches can be accessed faster than from memory

 For multilevel caches, data accessed from L1 cache has lower latency than from an
L2 cache

 The cache interference and time difference for the access patterns leaks
information:

 Certain memory contents exist in cache or not

 Shows that data has been accessed recently

 This attack is useful to find keys for encryption process

Evict + Time Attack

32

Set 1

Set 2

Set 3

Set 4

Cache Main Memory

Victim’s Data Attacker’s DataMemory block

64 bytes

• He triggers the encryption and times it.

• He evicts everything from Set1.

• He runs the encryption again and times it.

• He triggers the encryption and times it.

• He evicts everything from Set4.

• He runs the encryption again and times it.

• It takes longer than step 1, he knows that

the encryption process accessed 0x1000.

miss

hit

hit

• It takes roughly the same time, he knows that

the encryption process didn’t access 0x4000.

hit

hit

hit

The attacker wants to know if 0x1000,

which maps to cache Set 1, was accessed

The attacker wants to know if 0x4000,

which maps to cache Set 4, was accessed

Osvik D A, Shamir A, Tromer E. Cache attacks and countermeasures: the case of AES[M]//Topics in Cryptology–CT-RSA 2006. Springer Berlin Heidelberg, 2006: 1-20.

Prime + probe technique

 Prime + probe technique consists of 3 stages

 Prime stage : The attacker fills the cache with his own cache lines.

 Victim accessing stage : The victim process runs

 Probing stage : The attacker accesses the priming data again. If the victim process evicts the primed
data, the reloading will incur cache miss.

Osvik D A, Shamir A, Tromer E. Cache attacks and countermeasures: the case of AES[M]//Topics in Cryptology–CT-RSA 2006. Springer Berlin Heidelberg, 2006: 1-20.

Prime + probe technique

Set 1

Set 2

Set 3

Set 4

Cache Main Memory

Victim’s Data Attacker’s Data

Memory block

64 bytes

• He fills Set1 with his data.

• He runs the victim process.

• He reloads all his data in Set1.

• He fills Set4 with his data.

• He runs the victim process.

• He reloads all his data in Set4.

• It takes longer, he knows that

the victim process accessed Set1.

hithit

• It takes lesser time, he knows that the victim process

didn’t access Set4.

hit hithit

The attacker wants to know if a particular

address in cache Set 1 was accessed
The attacker wants to know if a

particular address in cache Set 4 was accessed

miss

hit hit

Taken from the presentation of “3D Integration: New Opportunities in Defense Against Cache-timing Side-channel Attacks” by Chongxi Bao and Ankur Srivastava on ICCD’15.

Limitations

 Can only be applied in small caches (L1 caches)

 Since it is used in small caches its applicable to processes located in the same core

4KB pages

12 bits

Cache line size = 64

bytes

Offset for cache = 6 bits

Cache index = 6 bits

at most to access 64 sets

Practical Scenario

 In Cloud computing environment two users can share same hardware

 Users running on different cores share the last level cache

Hardware

VMM

Guest OS 1 Guest OS 2

VM VM

S$A attack (Shared Cache Attack)

 S$A attack is targeted towards the LLC

 Make use of huge size pages

 L1 – 64 sets

 L2 – 512 sets

 L3 – 4096 sets

 Takes advantage of the control of

lower bits of the virtual address

Gorka Irazoqui, Thomas Eisenbarth and Berk Sunar, “S$A: A Shared Cache Attack that Works Across Cores and Defies VM Sandboxing—and its Application to AES”, Oakland’15

Steps involved in S$A attack

1. Allocation of huge size pages

 Spy process have access to huge pages using his administrator rights in guest OS

2. Prime desired set in last level cache

 Attacker creates data that fills a set in the LLC and primes it

3. Reprime

 Since LLCs are inclusive some sets in the upper level will also be filled

 Evict data from the upper level caches

 Reprime data to fill different set in LLC but same set in upper level cache

Steps involved in S$A attack

4. Victim process runs

 Victim runs the target process

 If monitored cache set is used, some of the primed lines will be evicted

 Else all primes lines will reside in the LLC

5. Probe and measure

 After execution of victim process, spy process probes the primed memory lines and measures the time
to probe

 If one or more lines have been evicted probe time will be higher

 Shorter probe time if no lines were evicted

Flush + Reload Attack

 Flush one cache line and time the execution of reloading the value to figure out
whether the victim program has access this cache line or not.

 Fine-grained: attack at cache line granularity.

40

Yarom Y, Falkner K. Flush+ reload: a high resolution, low noise, L3 cache side-channel attack. USENIX Security 14

Flush + Flush Attack

 The same idea as Flush + Reload attack.

 Problem: incur too much cache misses in reloading process, which may be used as a signature to detect
cache side channel attack

 Flush + Flush attack exploits the execution time of Flush instruction to learn whether the
Flush instruction hit the cache or not.

 Flush instruction can abort early in case of a cache miss. In case of a cache hit, it has to
trigger eviction on all local caches, so it would take longer.

 Attack at cache line granularity, but less accuracy than Flush + Reload

 More stealthier, because incur fewer cache misses

41
Gruss D, Maurice C, Wagner K. Flush+ Flush: A Stealthier Last-Level Cache Attack. arXiv preprint arXiv:2015

Cache Storage Channel Attack

42

Exploit the uncacheable property of some cache

lines.

Any write to uncacheable address will not modify

the value in cache line.

Suppose attacker has a pair of alias VA_c and

VA_nc, which map to the same physical address PA

in cache.

Depending on some secret values, the victim may

access PA.

This storage channel is less noisy than timing

channels.

Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam, “Cache Storage Channels: Alias-Driven Attacks and Verified Countermeasures”, S&P’16

Defenses

 Cache interferences are the root causes of cache
side channel attacks.

 Software-based approaches are all attack
specific and algorithm specific.

 Hardware-based approaches:

 Randomize the cache interferences -> no information
leakage through interference.

 Partition the cache statically -> no cache interferences.

Defenses

Software Hardware

Randomize the
interferences

RPcache

Partition the
cache

statically

PLcache

Sanctum

RPcache (Random Permutation Cache)

 Randomizes cache-memory mapping, when a cache interference occurs, so no useful
information about which cache line was evicted can be inferred.

P

Zhenghong Wang and Ruby B. Lee “New cache designs for thwarting software cache-based side channel attacks”, ISCA 2007.

Cache access handling procedure

Logical view

Example of RPCache

Set 1

Set 2

Set 3

Set 4

Cache Main Memory

Victim’s Data Attacker’s DataMemory block

64 bytes

hit hithit hit

1. Attacker fills set 1.

2. Attacker runs the encryption process.

3. Victim’s data maps to set 2 instead of set 1, and the mapping is swapped.

4. Attacker tries to access his data, and the mapping is swapped randomly again,

so the hit rate of attacker’s data does not infer any memory access of victim.

PLCache (Partition-Locked Cache)

 A process is able to lock the cache lines in the cache, so the cache will not evicted by
the data of other processes.

Zhenghong Wang and Ruby B. Lee “New cache designs for thwarting software cache-based side channel attacks”, ISCA 2007.

Cache access handling procedure

Performance Evaluation

RPCache: The performance impact caused by the random cache evictions in RPcache is negligible: worst case

1.7% (on 4K directed-mapped cache) and 0.3% on average.

PLCache: When the size of the protected memory (5KB) is larger than the cache capacity (4KB cache), the

performance is always bad because all cache lines are locked. Set-associativity affects performance as well,

direct-mapped cache has ~30% overhead.

Attack on PL Cache

 PL cache can protect the cache lines from evicting from the cache by other
processes, but it does not prevent the cache access when we start loading the
victim’s cache line.

 Evict + Time does not work any more.

 Prime + probe still works.

 Flush + Reload still works.

 Flush + Flush still works

51
Kong J, Aciicmez O, Seifert J P, et al. Deconstructing new cache designs for thwarting software cache-based side channel attacks, ACM workshop on Computer security architectures. 2008

Sanctum

 Sanctum offers strong provable isolation of software modules running concurrently
and sharing resources, but protects against the attacks that infer private information
from a program’s memory access patterns, including cache side channel attacks.

 Like SGX, Sanctum isolates the software inside an enclave from any other software
on the system, including privileged system software.

Costan V, Lebedev I, Devadas S. Sanctum: Minimal Hardware Extensions for Strong Software Isolation[J].

Static DRAM/LLC Partitioning

• Addresses in a DRAM region do not collide in the last level cache with addresses from any other DRAM

region. So the OS can place two different applications in two different DRAM regions, then the cache

interference in the last level cache is eliminated.

• For high level caches, Sanctum flushes them whenever a core jumps between enclave and non-enclave code.

Cache address shifter
The fragmentation of DRAM regions makes it

difficult for the OS to allocate contiguous

DRAM buffers, which are essential to the

efficient DMA transfers used by high

performance devices.

Shifting the physical page number by 3 bits

yields contiguous DRAM regions.

Performance Evaluation

Sanctum: Largest overhead is 4%, and average is

1.9% on an insecure baseline.

Language-based Approach

 Avoid timing channel during design phase

 SecVerilog

56Danfeng Zhang, Yao Wang, G. Edward Suh and Andrew C. Myers. “A Hardware Design Language for Timing-Sensitive Information-Flow Security”. ASPLOS’15

Demo

 Prime + Probe attack on AES

 Key: 00 00 00 00 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

57

Rebeiro C, Nguyen P H, Mukhopadhyay D, et al. Formalizing the Effect of Feistel cipher structures on differential cache attacks[J]. Information Forensics and Security, IEEE Transactions on, 2013, 8(8): 1274-

1279.

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

58

Power Side Channel Attack

 Complementary metal oxide semiconductor (CMOS) is a technology for
constructing integrated circuits.

 Since the static power consumption of CMOS is very low, CMOS
processes have come to dominate. And now the vast majority of modern
integrated circuit manufacturing is on CMOS processes.

 BUT, this advantage can also be used by attackers.

 The key idea is that the dynamic power consumption will be distinct from
static power consumption.

 So, high power consumption means a change from 0 -> 1 or 1 -> 0.

This demo slide deck is modified from the project presentation “Power Analysis on AES” in 2013 done by Chenglu Jin and Rui Yang.

Power Model
 Higher power consumption

 = More bits flipping

 = Bigger Hamming Distance between input and output of the last round

Metric
 Correlation coefficient between real power consumption and Hamming

Distance.

Workflow

Mangard S, Oswald E, Popp T. Power analysis attacks: Revealing the secrets of smart cards[M]. Springer Science & Business Media, 2008.

Workflow (continued)

Workflow (continued)

FPGA Board (SASEBO-G)

Experiment Equipment
 One DC power supply (Agilent E3610A)

 One digital oscilloscope (YOKOGAWA DL7200)

 One FPGA board (SASEBO-G)

 One PC

 Two probes

Experiment Setup
 1. Configure the PC as an FTP server.

 2. Build an Ethernet to connect digital oscilloscope and PC.

Experiment Setup
(continued)

 3. Download .bit files to FPGA board, one is used for AES
operation and the other one is used to control the AES
operation on the other chip.

 4. Grab the trigger signal with the probe connected to
channel 3. Take the power consumption waveform from a
resistor paralleling with the AES chip via the channel 1.

Experiment Setup
(continued)

 5. Configure the digital oscilloscope. For channel 1, set the
vertical scale to 50 mV/div, the offset to 150 mV, and
enable 20MHz BWL. For channel 3, set the vertical scale
to 1 V/div and the offset to 0 V. Set the trigger source to
channel 3 and the triggering mode to negative edge.

Power Measurement
 Use a software called SASEBO-checker to launch AES operation and store

the ciphertext which are feedback from FPGA.

Power Measurement
(continued)

 Measure the power traces at a sampling rate of 2GHz, and store the power
traces to PC via Ethernet.

 In total, we measured 10,000 power traces.

Data Analysis
 Write C code to compute the Hamming Distance and the correlation

coefficient between real power consumption and hypothesis.

 Plot graphs of the correlation coefficients.

Results (byte 0) roundkey=13

Results (byte 1) roundkey=11

Results (byte 4) roundkey=E3

Results (byte 5) roundkey=94

Results (byte 8) roundkey=F3

Results (byte 9) roundkey=07

Results (byte 12) roundkey=4D

Results (byte 13)
roundkey=2B

Reference
 1. https://en.wikipedia.org/wiki/Side-channel_attack

 2. Paul Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems”. Crypto’96

 3. Daniel J. Bernstein. “Cache-timing attacks on AES”. 2005

 4. Paul Kocher, Joshua Jaffe and Benjamin Jun. ”Differential Power Analysis”. Crypto’99

 5. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electromagnetic Analysis: Concrete Results”. CHES’01

 6. Daniel Genkin, Adi Shamir and Eran Tromer. “RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis”. CRYPTO’14

 7. Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic and Jean-Pierre Seifert. “Simple Photonic Emission
Analysis of AES Photonic Side Channel Analysis for the Rest of Us”. CHES’12

 8. David Brumleya and Dan Boneh, “Remote timing attacks are practical”. Computer Networks’05.

 9. Preneel, Bart and Paar, Christof and Pelzl, Jan. “Understanding cryptography: a textbook for students and practitioners”. Springer
2009

 10. Bellare M, Rogaway P. Optimal asymmetric encryption EUROCRYPT'94

82

Reference
 11. https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

 12. https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

 13. https://en.wikipedia.org/wiki/Karatsuba_algorithm

 14. https://github.com/stoutbeard/crypto

 15. Osvik D A, Shamir A, Tromer E. Cache attacks and countermeasures: the case of AES[M]//Topics in Cryptology–CT-RSA 2006.
Springer Berlin Heidelberg, 2006: 1-20.

 16. Chongxi Bao and Ankur Srivastava. "3D Integration: New Opportunities in Defense Against Cache-timing Side-channel Attacks".
ICCD’15.

 17. Gorka Irazoqui, Thomas Eisenbarth and Berk Sunar, “S$A: A Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing—and its Application to AES”, Oakland’15

 18. Yarom Y, Falkner K. Flush+ reload: a high resolution, low noise, L3 cache side-channel attack. USENIX Security 14

 19. Gruss D, Maurice C, Wagner K. Flush+ Flush: A Stealthier Last-Level Cache Attack. arXiv preprint arXiv:2015

 20. Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam, “Cache Storage Channels: Alias-Driven Attacks and
Verified Countermeasures”, S&P’16

83

Reference
 21. Zhenghong Wang and Ruby B. Lee “New cache designs for thwarting software cache-based side channel attacks”, ISCA 2007.

 22. Kong J, Aciicmez O, Seifert J P, et al. Deconstructing new cache designs for thwarting software cache-based side channel
attacks, ACM workshop on Computer security architectures. 2008

 23. Costan V, Lebedev I, Devadas S. Sanctum: Minimal Hardware Extensions for Strong Software Isolation[J].

 24. Danfeng Zhang, Yao Wang, G. Edward Suh and Andrew C. Myers. “A Hardware Design Language for Timing-Sensitive
Information-Flow Security”. ASPLOS’15

 25. Mangard S, Oswald E, Popp T. Power analysis attacks: Revealing the secrets of smart cards[M]. Springer Science & Business
Media, 2008.

84

