
CSE 5095 & ECE 6095 ðSpring 2016 ðInstructor Marten van Dijk

Chenglu Jin
Department of Electrical & Computer Engineering

University of Connecticut

Email: chenglu.jin@.uconn.edu

Side Channel Attacks

Based on and extracted from NickolaiZeldovitch, Computer System

Security, course material at http://css.csail.mit.edu/6.858/2014/

With help from Marten van Dijk

http://css.csail.mit.edu/6.858/2014/

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

2

Introduction

ÁIn cryptography, a side-channel attack is an attack based on information gained
from the physical implementation of a cryptosystem, rather than brute force or
theoretical weaknesses in the algorithms (compare cryptanalysis).

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic Emission channel

3

https://en.wikipedia.org/wiki/Side-channel_attack

Timing Side Channel

The computation time depends on the value of

secret data, so one can uncover the secret by timing

the execution of a particular operation.

4Paul Kocher. òTiming Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systemsó. Cryptoõ96

Cache Timing Channel

Different secret data can lead to different data

access pattern (cache hit or cache miss), and cache

hit and miss has a huge timing difference.

Therefore, one can extract the secret by observing

the access time of each cache access.

5

Daniel J. Bernstein. òCache-timing attacks on AESó. 2005

Power Channel

6

Paul Kocher, Joshua Jaffe and Benjamin Jun. óDifferential Power Analysisó. Cryptoõ99

The power consumption of a chip depends on the secret data that is computing on the chip. One is able to

uncover the secret data by measuring the power consumption of the entire chip.

EM Radiation Channel

7

EM radiation depends on the secret data that is being processed.

KarineGandolfi, Christophe Mourtel, and Francis Olivier. òElectromagnetic Analysis: Concrete Resultsó. CHESõ01

Acoustic Channel

Acoustic frequency from different motherboard

components leak information about the instructions

performed by the targetõs CPU

8
Daniel Genkin, Adi Shamir and EranTromer. òRSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysisó. CRYPTOõ14

Photonic Emission Channel

9

Photonic emission pattern is data dependent, so it can also be used to extract the secret data.

Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic and Jean-Pierre Seifert. òSimple Photonic Emission Analysis of AES Photonic Side Channel Analysis for the Rest of Usó.

CHESõ12

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

10

Timing Attack on RSA

ÁThis paper demonstrates an attack to reconstruct private key of RSA over the
network.

11
David Brumleyaand Dan Boneh, òRemote timing attacks are practicaló. Computer Networksõ05.

RSA Background

ÁRSA: parameters

Á1. Pick two random primes, p and q. Let n = p*q. A reasonable key length, i.e., |n|,
is 2048 bits today.

Á2. Euler's function phi(n) = (p-1) * (q-1)

ÍFor all a and n, aphi(n) = 1 mod n

ÁEncryption: c = me mod n

ÁDecryption: m = cd mod n

Áe is public key and d is private key, such that me*d mod n = m

ÁBy using phi(n) function and extended Euclidean algorithm, we can easily compute d
from e.

12

Preneel, Bart and Paar, Christof and Pelzl, Jan. òUnderstanding cryptography: a textbook for students and practitionersó. Springer 2009

Problems of Plain RSA

ÁCiphertexts are multiplicative

ÍE(a)*E(b) = ae * be = (ab)e

ÁRSA is deterministic encryption

ÍCiphertext of the same plaintexts are the same.

ÁSolution:

ÍPadding: take plaintext message bits, add padding bits before and after plaintext. Padding bits
introduce randomness into encryption.

13

BellareM, RogawayP. Optimal asymmetric encryption EUROCRYPT'94

Optimal Asymmetric Encryption Padding

14

a.k.a. OAEP

To encode,

1. messages are padded withk1 zeros to benīk0 bits

in length.

2. r is a randomly generatedk0-bit string

3. Gexpands thek0 bits of r to nīk0 bits.

X = m00..0 ṥ G(r)

4. H reduces thenīk0 bits ofX to k0 bits.

Y = rṥ H(X)

5. The output isX || Y whereX is shown in the diagram

as the leftmost block andY as the rightmost block.

To decode,

1. recover the random string asr = Yṥ H(X)

2. recover the message asm00..0 = Xṥ G(r)

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

RSA implementation

ÁKey problem: fast modular exponentiation.

ÍIn general, quadratic complexity.

ÍMultiplying two 1024-bit number is slow

ÍComputing the modulus for 1024-bit numbers is slow. (1024-Ȥbit division).

15

Optimization 1

ÁHow to do modular exponentiation of a large number efficiently?

ÁShort answer: split it into two smaller numbers

ÁChinese Remainder Theorem:

ÁFirst, Compute m1 = cd (mod p), and m2 = cd (mod q).

ÁThen, Compute m = q cp m1 + p cq m2 mod n

ÍWhere cp = q -1 mod p, cq = p -1 mod q

ÁIt has 2x speedup.

ÍShorter modular exponentiation in the first step

ÍOnly modular multiplication and addition in second step

16

Preneel, Bart and Paar, Christof and Pelzl, Jan. òUnderstanding cryptography: a textbook for students and practitionersó. Springer 2009

Optimization 2

ÁHow to do modular exponentiation efficiently?

ÁShort answer: repeated squaring

ÁExample: we want to compute a16

Á1. Do 15 multiplications

Á2. Do 4 squaring ((((a)2)2)2)2) = as

17

Optimization 2

ÁRepeated squaring and Sliding windows

18

If we consider more than one consecutive bits in k in each

iteration, we call it sliding window.

e.g. if kiki+1 = 3, then square twice and multiply with g3

To compute gK

Optimization 3
ÁHow to do modular operation efficiently?

ÁShort answer: avoid division, only use multiplication and subtraction

ÁMontgomery representation:multiply everything by some factor R.

Áa mod q <-> aRmod q

Áb mod q <-> bRmod q

Ác = a*b mod q <-> cRmod q = (aR* bR)/R mod q =
Í(aRmod q) * (bRmod q) * R-1 mod q.

ÁAdditional division by R should be very cheap, either shifting or multiplying with precomputed R-1
. (E.g. R =

2n)

ÁExample:

ÁN = 17, R= 100, R-1 = 8. The Montgomery forms of 3, 5, 7, and 15 are300 mod 17 = 11,500 mod 17 =
7, 700 mod 17 = 3, and1500 mod 17 = 4.

ÁMontgomery forms of 7 and 15 modulo 17 is the product of 3 and 4, which is 12.

Á12 * R-1 mod N = 12 * 8 mod 17 = 11 (Montgomery form of 3)

19

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

Extra reduction

ÁOne remaining problem: result (aR* bR) /R will be < R, but might be > q.

ÍRequires subtraction of q. This is called extra reduction.

ÍPr[extra reduction] = (x mod q) / 2R, when we compute xd mod q

ÁNotice: If extra reduction happens, the computation costs more time. This timing leaks
information.

20

Optimization 4
ÁHow to do multiplication efficiently?

ÁShort answer: select an efficient multiplier on the fly

ÁTwo options: pair-wise multiplier and Karatsuba multiplier

ÁFirst , split two 512-bit numbers into 32-bit components.

ÁSecond, select one multiplication from two different multiplications: pair-wise multiplication vs
Karatsuba multiplication

ÁPair-wise:
ÍRequires O(nm) time if two numbers have n and m components respectively

ÍO(n2) if the two numbers are close

ÁKaratsuba:
ÍRequires O(n1.585) time

ÁIn the implementation, the software selects the most efficient multiplication to compute
according to the values of n and m.

21
Notice: selection of multipliers leaks information.

https://en.wikipedia.org/wiki/Karatsuba_algorithm

The big picture of RSA Decryption

22

Construction of attack vectors

ÁLet q = q0 q1 .. qN, where N = |q|

ÁAssume we know some number j of high-order bits of q (q0 to qj)

ÁConstruct two approximations of q, guessing qj+1 is either 0 or 1:

Íg = q0q1éqj0 0 é 0 0

Íghi = q0q1éqj 1 0 é 0 0

ÁTrigger the decryption gd and ghi
d. (Padding is checked after decryption)

ÁTwo cases:

Íqj+1 = 0 => g < q < ghi: time(gd) and time(ghi
d) have noticeably difference

Íghi mod q is small

ÍLess time: fewer extra reductions

ÍMore time: switch from Karatsuba to pair-wise multiplication

Íqj+1 = 1 => g < ghi < q: time(gd) and time(ghi
d) have no much difference

23

Evaluation

24
Zero-one gap (TgðTghi) for three different keys

Effect of extra

reduction.

Evaluation

25
Zero-one gap (TgðTghi) for three different keys

What if the two

effects are

canceled out?

Neighborhood Size

For every bit of g we measure the decryption time for a neighborhood of values g;
g+1; g+2; :::; g+n. We denote this neighborhood size by n.

26

Effect of increased neigh. size

27

Countermeasures

ÁRSA blinding

ÍChoose random r when decryption

ÍRandomize cõ = c * re mod n

ÍMultiplicative property of RSA => the decrypted result
is mõ = m * r

Ím= mõ /r

ÁConstant execution time

ÍMontgomery Ladder

ÁDisallow the access to the precise timer

ÍAttacker may still be able to figure out the information
from throughput.

28

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

Demo

ÁFor demo purpose:

Áp =97, q = 103, e = 31. N = p *q = 92391

ÁPrivate key: d = 7

29

https://github.com/stoutbeard/crypto

Outline
1. Introduction

1. Timing channel

2. Power channel

3. EM radiation channel

4. Acoustic channel

5. Photonic emission channel

2. Timing attack on RSA
1. Background

2. Target RSA implementation

3. Attack

4. Defense

5. Demo

3. Cache timing attack
1. Attacks

2. Countermeasures

3. Demo

4. Differential Power Analysis
1. Differential Power Analysis on AES

30

Cache side channel attacks

ÁData present in caches can be accessed faster than from memory

ÁFor multilevel caches, data accessed from L1 cache has lower latency than from an
L2 cache

ÁThe cache interference and time difference for the access patterns leaks
information:

ÍCertain memory contents exist in cache or not

ÍShows that data has been accessed recently

ÁThis attack is useful to find keys for encryption process

Evict + Time Attack

32

Set 1

Set 2

Set 3

Set 4

Cache Main Memory

Victimõs DataAttackerõs DataMemory block

64 bytes

Å He triggers the encryption and times it.

Å He evicts everything from Set1.

Å He runs the encryption again and times it.

Å He triggers the encryption and times it.

Å He evicts everything from Set4.

Å He runs the encryption again and times it.

Å It takes longer than step 1, he knows that

the encryption process accessed 0x1000.

miss

hit

hit

Å It takes roughly the same time, he knows that

the encryption process didnõt access 0x4000.

hit

hit

hit

The attacker wants to know if 0x1000,

which maps to cache Set 1, was accessed

The attacker wants to know if 0x4000,

which maps to cache Set 4, was accessed

OsvikD A, Shamir A, TromerE. Cache attacks and countermeasures: the case of AES[M]//Topics in CryptologyðCT-RSA 2006. Springer Berlin Heidelberg, 2006: 1-20.

Prime + probe technique

ÁPrime + probe technique consists of 3 stages

ÍPrime stage : The attacker fills the cache with his own cache lines.

ÍVictim accessing stage : The victim process runs

ÍProbing stage : The attacker accesses the priming data again. If the victim process evicts the primed
data, the reloading will incur cache miss.

OsvikD A, Shamir A, TromerE. Cache attacks and countermeasures: the case of AES[M]//Topics in CryptologyðCT-RSA 2006. Springer Berlin Heidelberg, 2006: 1-20.

Prime + probe technique

Set 1

Set 2

Set 3

Set 4

Cache Main Memory

Victimõs DataAttackerõs Data

Memory block

64 bytes

Å He fills Set1with his data.

Å He runs the victim process.

Å He reloads all his data in Set1.

Å He fills Set4with his data.

Å He runs the victim process.

Å He reloads all his data in Set4.

Å It takes longer, he knows that

the victim process accessed Set1.

hithit

Å It takes lesser time, he knows that the victim process

didnõt access Set4.

hit hithit

The attacker wants to know if a particular

address in cache Set 1was accessed
The attacker wants to know if a

particular address in cache Set 4was accessed

miss

hit hit

Taken from the presentation of ò3D Integration: New Opportunities in Defense Against Cache-timing Side-channel Attacksó by ChongxiBaoand AnkurSrivastava on ICCDõ15.

Limitations

ÁCan only be applied in small caches (L1 caches)

ÁSince it is used in small caches its applicable to processes located in the same core

4KB pages

12 bits

Cache line size = 64

bytes

Offset for cache = 6 bits

Cache index = 6 bits

at most to access 64 sets

Practical Scenario

ÁIn Cloud computing environment two users can share same hardware

ÁUsers running on different cores share the last level cache

Hardware

VMM

Guest OS 1 Guest OS 2

VM VM

S$A attack (Shared Cache Attack)

ÁS$A attack is targeted towards the LLC

ÁMake use of huge size pages

ÁL1 ð64 sets

ÁL2 ð512 sets

ÁL3 ð4096 sets

ÁTakes advantage of the control of

lower bits of the virtual address

Gorka Irazoqui, Thomas Eisenbarthand BerkSunar, òS$A: A Shared Cache Attack that Works Across Cores and Defies VM Sandboxingñand its Application to AESó, Oaklandõ15

