
INTEL SGX
COMPUTATIONAL BACKGROUND

HAMZA OMAR

SECTIONS
 OVERVIEW.

 Computational Model.

 Software Privilege Levels.

 Address Translation.

 Execution Contexts.

 Segment Registers.

 Privilege Level Switching.

 OOO and Speculative Execution.

 Caches.

OVERVIEW
 Summarizing general architectural principles
behind Intel’s most popular computer
processors.

We will discuss Intel’s 64-bit version of x86
processor designed by AMD, also known as
AMD64.

Intel computers typically run Operating systems
and Hypervisors.

 Operating System: Allocates the computer’s
resources to the running processes.

 Hypervisor: Partitions the computer’s
resources between the operating system
instances running on the computer. It exposes

fixed number of virtual CPUs (vCPUs) to each
operating systems.

 System software uses virtualization techniques
like address translation and setting software
privilege levels, to isolate each piece of software
that it manages (process or operating system)
from the rest of the software running on the
computer.

 Execution Core VS DRAM. (caches)

Intel’s Software Development Manual (SDM).

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

SECTIONS
 Overview.

 COMPUTATIONAL MODEL.

 Software Privilege Levels.

 Address Translation.

 Execution Contexts.

 Segment Registers.

 Privilege Level Switching.

 OOO and Speculative Execution.

 Caches.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

COMPUTATIONAL MODEL
 In a computer system, the processor(s), DRAM and all the outside world interfaces
communicate with each other through a common system bus (broadcast network).

 During each clock cycle, at most one of the devices connected to the system bus can send a
message (Read-Request/Read-Response). Each device attached to the bus decodes the
operation codes and addresses of all the messages sent on the bus and ignores when they do
not require it.

COMPUTATIONAL MODEL
 Computation like ADD A, B, C.

 RIP (Instruction Pointer Register): Stores Next Address.

 RSP (Stack Pointer Register): Address of Top Most Element.

 INTEL uses variable sized instruction encoding.

 In case of faults, Exception handler is called.

What about I/O devices and Interrupts ?

SECTIONS
 Overview.

 Computational Model.

 SOFTWARE PRIVILEGE LEVELS.

 Address Translation.

 Execution Contexts.

 Segment Registers.

 Privilege Level Switching.

 OOO and Speculative Execution.

 Caches.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

SOFTWARE PRIVILEGE LEVELS
 Commodity CPUs (x86) run software are four different privilege levels. So, each privilege level is
more powerful than the one’s below.

 Trust at higher privilege software.

 SMM (Motherboard Manufacturers Region).
 Fan Control, Deep Sleep, Boot-Strapping.

 (Virtual Machine Extension) VMX-Root.
 Hypervisor runs at ring0 allocates resources.

 It makes each OS to believe it is using its own CPU.

 VMX-Non-Root.
 OS into small Kernels – at higher privilege level.

 Ring 3 – Application code ,Web-server or game client.

SECTIONS
 Overview.

 Computational Model.

 Software Privilege Levels.

 ADDRESS TRANSLATION.

 Execution Contexts.

 Segment Registers.

 Privilege Level Switching.

 OOO and Speculative Execution.

 Caches.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

PRIVILEGE
LEVEL

SWITCHING

ADDRESS
TRANSLATION

ADDRESS TRANSLATION
Pages & Page Tables:
 Logical Address space is very large (64 bit has sixteen quintillion bytes). On the other hand our
DRAM also becomes expensive, as the size increases when we need to store large amount of data.

 The logical address space is converted to fixed size blocks called pages similarly, the DRAM space is
converted to frames.

 In practice, the process of paging becomes more complex

so we extend our page tables to hierarchical page tables,

where one page table points to the other page table and

this process goes on until we get the actual physical

address.

ADDRESS TRANSLATION
Concepts:
 System software relies on the CPU’s address translation mechanism for implementing isolation
among less privileged pieces of software (applications or operating systems).

 Virtual Memory Abstraction
 Each process gets a separate virtual address space that

references the memory to that process.

 OS multiplexes the DRAM between processes, while

Developers see as if it owns the entire memory.

ADDRESS TRANSLATION
Concepts:
Why need isolation ?

Address Translation isolates the processes from each other
and prevents application code from accessing memory mapped devices

directly. So application’s bug cannot affect the higher level privilege

applications such as OS kernel itself.

 In 64-bit OS, 48-bit virtual address is mapped to physical address.

MMU does the Translation process.

 [11:0] – Unchanged. These bits partition address space into pages.

 [47:12] – Grouped into four 9-bit indexes for indexing to different

hierarchical page tables.

 [47:39] – Page Map Level, [38:30] – Page Directory Pointer Table,

[29:21] – Page Directory, [20:12] – Page Table.

ADDRESS TRANSLATION
VPN to PPN:
 Address translation is actually the mapping of Virtual Page Number (VPN) to Physical Page Number
(PPN).

 One more advantage of using address translation is to run applications whose collective memory
demand exceeds the amount of DRAM. In such cases, OS evicts infrequently used pages from DRAM
to our hard-drives or SSD. This process is called Page Swapping.

When an application process attempts to access a page that has been evicted, the OS “steps in” and
reads the missing page back into DRAM from Disk. In order to do this, the OS might have to evict a
different page from DRAM, effectively swapping the contents of a DRAM page with a disk page.

ADDRESS TRANSLATION
Virtualization:

 Hypervisor runs multiple operating systems at the same time and each OS is under an
impression that it owns the entire computer’s DRAM. This creates some tension !!
 SOLUTION: Introduction of Extended Page Table.

 Extended Page Table:
 The hypervisor multiplexes the computer’s DRAM between

the operating systems’ guest-physical address spaces via the

second layer of address translations, which uses extended page

Tables (EPT) to map guest-physical addresses to physical addresses.

 EPT uses the same data structure as the page tables.

When caching some addresses, the guest space page table

entries are traversed in horizontal while the EPT entities are

traversed in vertical direction.

ADDRESS TRANSLATION
Page Table Attributes & Flags:
Each level in the kernel’s page table requires a full walk of the hypervisor’s extended page table
(EPT). A translation requires up to 20 memory accesses (the bold boxes), assuming the physical
address of the kernel’s PML4 is cached.

 FLAGS:
 A – accessed flag is set to 1 whenever MMU reads a

Page table entry.

 D – dirty flag is set to 1 when an entry is accessed by

a memory write operations.

 P – Set to 0 when ever a page is evicted from DRAM.

W – can be set to 0 to prohibit any writes.

 XD – disables instruction fetches from a page.

 S – supervisor flag is set to 1 to prohibit any accesses

from lower privilege level applications.

SECTIONS
 Overview.

 Computational Model.

 Software Privilege Levels.

 Address Translation.

 EXECUTION CONTEXTS.

 Segment Registers.

 Privilege Level Switching.

 OOO and Speculative Execution.

 Caches.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

EXECUTION CONTEXTS
 64-bit architecture uses variety of CPU registers to interact with processor’s feature.

 Context Switching: It is the procedure of storing the state of an active process for the CPU when it
has to start executing a new one.

 Context switching also plays a part in executing code inside secure containers, so its design has
security implications.

 Integers and memory addresses are stored in 16 general purpose registers (GPRs). The first 8 are
the extended versions of 32-bit architecture. The other 8 are simply known as R9-R16.

 RSP: Stack pointer use CALL/RETURN functions like PUSH/POP.

 RIP: It has the address of the currently executing instruction.

Thread A SAVE Register Values
say X

Thread B Replace previous
register values with X

EXECUTION CONTEXTS
 The Intel architecture provides a method for an OS kernel to save the values of feature-
specific registers used by an application.

 OS kernel saves the feature specific register values for the application using XSAVE which takes
in a feature requested bitmap (RFBM). It writes the register values used by the feature whose
RFBM bits are set to 1.

 Figure shows some feature-specific Intel’s architecture registers.

 Kernel knows which XSAVE bitmap to use for context switching.
 Sets XCR0 register to feature bitmap.

 CPU generates a fault if the application attempts to use features

that are not enabled by XCR0.

 Task State Segment (TSS) was designed to implement hardware

context switching. The descriptor is stored in the Task Register (TR).

SECTIONS
 Overview.

 Computational Model.

 Software Privilege Levels.

 Address Translation.

 Execution contexts.

 SEGMENT REGISTERS.

 Privilege Level Switching.

 OOO and Speculative Execution.

 Caches.

SEGMENT REGISTERS
 INTEL’s architecture instructions include the implicit use of few segments which are loaded into the
processor’s segment registers. These registers contain the base address of these segments.
 CS – Code fetches use code segment.
 SS – Instructions the reference the stack use stack segment.
 DS/ES – Memory references use data segment or destination segment.
Modern OS effectively disable segmentation by putting
the entire addressable space into one segment, which is
loaded in CS and one data segment which is loaded in SS, DS and ES.

 These segment registers are of 16 bits.
Each segment register has a hidden segment descriptor, which
consists of a base address, limit, and type information, such as
whether the descriptor should be used for executable code or data.
 [15:3] : Indexing into descriptor table.
 [2:0] : Privilege level (Ring number).
 GDT: Global Descriptor Table (Register).

SEGMENT REGISTERS
Hardware Context Switching:
Hardware context switching was removed from the 64-bit Intel’s architecture. But Task State
Segment (TSS) was reserved.

 Now, TSS is used for I/O map, which indicates which address space of I/O can be accessed
directly from different privilege level applications e.g. Ring 3.

Modern operating systems do not allow application software (Ring 3) any direct access to the
I/O address space, so the kernel sets up a single TSS that is loaded into Task Register during early
initialization, and used to represent all applications running under the OS.

SECTIONS
 Overview.

 Computational Model.

 Software Privilege Levels.

Address Translation.

Execution contexts.

 Segment Registers.

 PRIVILEGE LEVEL SWITCHING.

 OOO and Speculative Execution.

 Caches.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

PRIVILEGE LEVEL SWITCHING

METHOD to INVOKERING
3

RING
0ACCESS /JUMP TO

RING ‘0’ SERVICES

WHY?

This would compromise the privileged software’s ability to enforce security and isolation invariants.

PRIVILEGE LEVEL SWITCHING
Secure Way:
 CASE: An application (Ring-3) wishes to write a file to the disk, the kernel (Ring-0) must check if
the application’s user has access to that file. If the ring 3 code could perform an arbitrary jump
in kernel space, it would be able to skip the access check.

 Transfer of Control:
 Intel’s architecture includes privilege-switching mechanisms used to transfer control from less

privileged software to well-defined entry points in more privileged software. So Ring-3 can access the
services of Ring-0 but to some extent, not all services.

PRIVILEGE LEVEL SWITCHING
Control Transfer from 0 3:

 CALLS:
 SYSCALL:Ring-3 app. uses this call to

gain access to specific entry points in
Ring-0 region.

 SYSRET: Privilege level switched back
to Ring-3 from Ring-0 by jumping to
the address in RCX register, which is
set by SYSCALL.

 FAULTS:
When hardware exception occurs in

ring-3 code, CPU performs a ring
switch and calls the corresponding
exception handler.
 #GP: Performing disallowed operation, needs

#GP handler.

 #PF: when address translation encounters a
page whose P flag is 0, means page was
evicted. This fault needs #PF handler which
reads swapped out page back into DRAM.

IDT (Interrupt Descriptor Table):
 Exception handlers are a part of OS

and their locations are in the first 32
entries of the IST.
 When a hardware exception occurs, the

execution state may be corrupted, and the
current stack cannot be relied on.

 Therefore, the CPU first uses the handler’s
IDT entry to set up a known good stack. SS is
loaded with a null descriptor, and RSP is set to
the IST value to which the IDT entry points.

Kernel Protects IDT,
using page tables, from

Ring-3 to access it

PRIVILEGE LEVEL SWITCHING
VMX Privilege Level Switching:
 Remember! Hypervisor uses virtualization to run multiple operating systems at the same time
and manages the Virtual Machines (VM).
 Hypervisor creates a control structure (VMCS) for each operating system instance that it wishes to run.

When a processor encounters an exception, hypervisor performs a VMEXIT for the fault to be handled.

 Example, if a address translation encounter an entry in the page table with P flag set to 0. The CPU
performs the exit for the page to be loaded in the table. When done, CPU calls a VMLAUNCH or
VMRESUME function to resume the operation.

SECTIONS
 Overview.

 Computational Model.

 Software Privilege Levels.

Address Translation.

 Execution contexts.

 Segment Registers.

 Privilege level switching.

 OOO AND SPECULATIVE
EXECUTION.

 Caches.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

OUT OF ORDER + SPECULATIVE
EXECUTION
 Execution is not in order, but commits are always in order using ROB.

 Any CPU actions observed by an attacker match the execution order, so the attacker may learn
some information by comparing the observed execution order with a known program order.

 Scoreboard and Tomosulo schedulers.

SECTIONS
 Overview.

 Computational Model.

 Software Privilege Levels.

 Address Translation.

 Execution contexts.

 Segment Registers.

 Privilege level switching.

 OOO and speculative execution.

 CACHES.

PROCESSOR

DRAM

C
A
C
H
E

BIOS

OPERATING
SYSTEM

HYPERVISOR

ADDRESS
TRANSLATIONPRIVILEGE

LEVEL
SWITCHING

CACHES AND COHERENCE

Processor Cache hierarchy DRAM

 Types of Caches
 Direct Mapped

 2, 4 - Way Associative

 Fully Associative

CACHES AND COHERENCE
Direct Mapped Cache

CACHES AND COHERENCE
2-Way Set Associative Cache

CACHES AND COHERENCE
Fully Associative Cache

CACHES AND COHERENCE
Cache Coherence
Example, core 0 and core 1 both have a value ‘A = 1’ in their private caches. If core 0 updates
the value of A to 5. How will core 1 know that the value of A has been changed ?

 Ensuring correctness and freshness of cache lines for each processor requires a protocol,
known as cache coherence protocol.

 Cache coherence protocol introduces different states for each cache line. In MSI protocol,
these states are Modified (M), Shared (S), and Invalid (I).

When in ‘M’ state, all other cores invalidate their cache lines.

When in ‘I’ state, the core asks for the most recently updates value. After getting it, that core
comes to ‘S’ state.

Multiple reads but single write is allowed. Meaning more than one core can be in ‘S’ state at
the same time but only one core at a time can be in ‘M’ state.

