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Memory Encryption Engine

= Memory Encryption Engine (MEE):

- Added in the uncore part of the processor (Memory Controller)

- protects SGX’s Enclave Page Cache against physical attacks.

- Data Confidentiality: Collections of memory images of DATA written to the DRAM cannot be

distinguished from random data.
- Integrity + freshness: DATA read back from DRAM to LLC is the same DATA that was most recently

written from LLC to DRAM.



How the MEE works — in a nutshell

Core issues a transaction
— (to MEE region); e.g., WRITE

Transaction misses caches and
forwarded to Memory Controller

MC detects address belongs to
MEE region & routes transaction
to MEE

Crypto processing and... ...

MEE initiates additional memory
accesses to obtain (or write to)
necessary data from DRAM

— Produces plaintext (ciphertext)
— Computes authentication tags
— (uses/updates internal data)

— writes ciphertext + added data

CPU package

Ciphertext

Internal SRAM

A

Core

Cache

--'—"—)

DRAM

extension of the Memory

MEE Operates as an

Controller (MC)

6 RCW 2016, Memory Encryption Engine
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Other data:
Counters &

Unauthorized DMA
transactions that
target the PRM
(Processor Reversed
Memory) range
should be aborted.




MEE basic setup and policy

* Memory access always at 512 bits Cache Line (CL) granularity

* Keys: randomly generated at reset by a HW DRNG module
— Accessible only to MEE hardware

Drop-and-lock policy: upon MAC tag mismatch, MEE

* Drops the transaction (i.e., no data is sent to the LLC)

* Locks the MC (i.e., no further transactions are serviced).

* Eventually system halts & reset is required (with new keys)
Encryption Key: 128 bits

MAC Key: 128 bits
Hash Key: 512 bits



Message Authentication Code

= MAC can be used to protected memory integrity.

= But what is the problem if we only use MAC?

= Reply attack

= Solutions:
= 1. Hash Tree (Store updated root hash in TCB)

- One root hash for the whole memory

= 2. Stateful MAC (Store updated states in TCB)
- One state for each cache line
- How to store all the states efficiently???



One level data structure

Tag = MAC (CTR, CL)

CTR is trusted

On-die storage

Integrity + freshness

Too many counters in trusted
region. Too expensive!

Tag0

Tag1

Tag2

Tag3




Compressing it: a 2-level data structure

On-die storage

CL10

Tag10

Tag0

Tag1

Tag2

Tag3

“Stateful” MAC over Data and CTR
1st level tags protect Data

2nd level tag protects the counters
Top level tag is internal = trusted
Counters protect “freshness”
Trading internal storage with a
walk over the data structure

(complexity & performance)



Embedded MAC tags

Level 1

Level O

Data

LOO

Root
(internal storage)
[ n10 ]
L10
|
00 ] oot ] (02 ] (708 ]« [Fagoo

Tag0

Tag1

Tag2

Tag3

Embedded MAC tags into
counter cache line to save
the memory accesses.

Why don’t we embed
tags into data cache
lines as well?



A Counter Cache Line

8 x 56-bit counters

! - . 56-bit
! cntr/ H cntr6 cntr5 | cntrd cntr3 cntr2 | cntrl | cntrO Ta
x K % A z 2
1
56-bit counters l ICounter

56-bit tags

1 bit (unused) | 7 bits | 56 bits

Internal field layout

One CL accommodates 8 counters and embedded tag

56 *8 + 56 + 8 =512
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Integrity
Tree

What is the
compression
rate?

Metadata

Protected
data

Level 3 n37 | n36 | n35 | n34 | n33 n32 n31 | n30
(root)
Level 2 Tag 20 n20 n21 n22 n23 n24 n25 n26 n27
i Counter
Level 1 Tag 10 n10 nll ni2 ni3 nl4 nl5 nl6 nl7 L CaChe
Lines
Level O Tag 00 n00 n01 n02 n03 n04 n05 n06 n07
Tree-covered region |
Tagl verQ verl ver2 ver3 verd versS vert ver/
|
L .
PD_TagO | PD_Tagl | PD_Tag2 | PD_Tag3 | PD_Tag4 | PD_Tag5 | PD_Tag6 | PD_Tag7 Tag CaChe Llne

Data Cache

Protected Data CL (ciphertext)

Line
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The overall compression rate

R Embedded MEE-MAC
‘ gi @
- Counters Level 2: Embedded
2 tags

Embedded tags g

tags
Versions & tags g 12+12 = 24MB

12



Comparison with Hash Tree
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More detalls

= How to encrypt?

= How to compute MAC?

= Background: AES (Advanced Encryption Standard)
= AES-128: 128-bit plaintext, 128-bit ciphertext, 128-bit key

15



MEE Counter Mode

Spatial and temporal coordinates
identify every 16B block in the address space, at any time

Address has 39 bits; idx: 2 bits representing location in the CL; Version: 56 bits
COUNTER_BLOCK

‘0 PhysAdr[38:6] idx Version Ctr
(37b) (33b) (2b) (56b)

v

CONFIDENTIALITY KEY > AES128

v
Encrypted Counter Block

Plaintext (or ciphertext),
128b

Encryption of 1 CL Ciphertext (or plaintext), 128b
involves 4 AES

Operat|0ns RCW 2018 Memnrv Fnervntinn Fnnine 18




Confidentiality Bound

Proposition 1 (Confidentiality bound). Let Adv be the
advantage of a probabilistic polynomial time algorithm in
distinguishing the ciphertexts in T from a set of random
strings. Then,

Adv < g4g5(¢') 5125 (4)
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The MAC algorithm

Tag=L+Q e K, +Q, e K, + Q, e K, + ... + Q; ¢ K, in GF(2%) Truncated to 56 bits

Compound nonce

L

‘0
39h)

Address>>6
(33b)

CTR
(56b)

Spatial &
4

| AES128 |
¥ |
[  H[127:64] L [63:0] |
Qo ® Ko — IPO
Q O Ky = IP1
Q, O K, = P2
Qs O K3 p— IP3
Qqa ®) Ka = P4
Qs O Ks p— IP5
Qg ®) Ke = IP6
Qs O K == IP7
Mod x** + x* + x> + x +1
Tag, 56b S Trunceg |« L

©ODDDDDD

T

coordinates

Multilinear universal hash
— (“Inner Product hash”)
— Operations in GF (2%%)

Masked by (truncated) AES

Truncated to 56 bits
— Why? Real world...

— |f tags and counters have
same length they can
share same internal bus
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MEE Forgery Resistance

Proposition 2 (The MEE forgery resistance). An active
adversary who collects a trace of g < 2°° —2 message-tag
samples that the MEE produces, and attempts a forgery,
has success probability at most

2
Psuccess(@) — EAES(Q) + & - (1 —+ %) <

1 |
< SAEs(zsé)"—zT@' (14-2? (11)
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Proof

= Use the main theorem in [5], which proves the security bounds for
such a MAC construction for us.

= First, we need to compute Maximum Interpolation Probability for

function f(b) = Truncate,(AES(K,b))

Let f be a random function from a set X to a finite set Y. Consider the
probability that f interpolates the points (x1,y1), (x2,¥y2), .-, (Tk, yr), Where
T1, T, ..., x, are distinct: i.e., that (f(x1), f(x2),..., f(xr)) = (1. Y2, Yk)-
This is what I call an interpolation probability, and more specifically a k-
interpolation probability.

[5] Bernstein D J. Stronger security bounds for Wegman-Carter-Shoup authenticators[M] EUROCRYPT’05
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Inequalities needed in proof

= (1)

*(1-ap)*(1—az)**(1—a)=1—-(a; +a,+--+ag) foranya; =0
such that ¥¥_,a; <1

<l14+2wforo<w <05
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MEE Forgery Resistance

Proposition 2 (The MEE forgery resistance). An active

adversary who collects a trace of g < 2°°

— 2 message-tag
samples that the MEE produces, and attempts a forgery,

has success probability at most

2
Pswc.*c:e.s:s*(@) — EAES(Q) + € - (1 %)

1 |
< 8AE.9(256)+2T6' (14-%) (11)

In order to maximize P, ..., the attacker need to collect 2°¢ - 2 MACs. But due
to the cost of collecting the trace, an efficient strategy for an attacker would be
blind guessing with probability 1/2°°
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Are 56-bit tags and 56-b1)t counters
secure enough’

7
A

= Rollover 56-bit counter —> 10.5 years

= Forgery 56-bit tag -> 2M years

- Assuming 1000 forge root per second.

Worried?
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SGX Memory Access Protection

MEE sits in MC, it cannot protect an enclave’s memory from software
attacks.

The root of SGX’s protections against software attacks is memory
access checks which prevents the currently running software from
accessing memory that does not belong to it.

Implemented in Page Miss Handler (PMH)
PMH triggers the extra microcode for all address translations
All the SGX instructions are implemented in microcode, which

introduces many new registers for storing metadata of
enclave.
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Security Check for Memory
Access

SGX adds a few security checks to the PMH. The
checks ensure that all the TLB entries created by
the address translation unit meet SGX’s memory

access restrictions.

‘ Perform Address Translation using FSM ‘
¥
| Prepare TLB entry |

)

Executing

No enclave
I code?
Physical
address
in PRM?

Yes

Yes

¥

Physical
Replace TLB address
No | entry address
with abort No Yes
page
Insert new entry
in TLB
No Yes
- v
Set XD atttibute
on TLB entry Page Fault
!
Insert new entry
in TLB
Physical
¢7 Yes address in
EPC? No
Read EPCM entry for
the physical address l
i Page Fault
__—EPCM entry™__
I ¥e$ = blocked? _— MO
T T A
P
Page Fault " EPCM ™

l— Yes —<\ entry typeis  >— No _l

P
~PT_REG2-

~ Page Fault
entry EID equals
current enclave’s
No Yes
' '
Page Fault T T~
" EPCMentry ~—___
—=__ ADDRESS equals translated >
No \irlr_‘_tua\ addreis_./_..r- Yes
Madify TLB entry flags
Page Fault according to EPCM entry

v
Insert new entry in TLB ‘ 29




SGX Security Check Correctness

Top-level invariant: At all times, all the TLB entries in every logical
processor will be consistent with SGX’s security guarantees.

First breakdown the top level invariant into three cases on:
whether a logical processor (LP) is executing enclave code or not

whether the TLB entries translate virtual addresses in the current enclave’s
ELRANGE
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Case Invariants

1. At all times when an LP is outside enclave mode, its TLB may only
contain physical addresses belonging to DRAM pages outside the
PRM.

2. At all times when an LP is inside enclave mode, the TLB entries for
virtual addresses outside the current enclave’s ELRANGE must
contain physical addresses belonging to DRAM pages outside the
PRM.

3. At all times when an LP is in enclave mode, the TLB entries for
virtual addresses inside the current enclave’s ELRANGE (Enclave
Linear Address Range ) must match the virtual memory layout
specified by the enclave author.
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Perform Address Translation using FSM

; Invariant 1

Prepare TLB entry

= At all times when an LP is outside
enclave mode, its TLB may only
contain physical addresses
belonging to DRAM pages outside
Yes the PRM.

Executing
enclave
code?

Physical
address

Replace TLB
NO | entry address
with abort

page

Insert new entry 4J
in TLB
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’7NO

Virtual address

Executing
enclave
code?

Yes

Physical
address
in PRM?

No

in ELRANGE?
No Yes
v .
Set XD attribute
on TLB entry Page Fault
v

Insert new entry
in TLB

Invariant 2

At all times when an LP is inside
enclave mode, the TLB entries for
virtual addresses outside the current
enclave’s ELRANGE (Enclave Linear
Address Range) must contain physical
Yes addresses belonging to DRAM pages
outside the PRM.
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Physical
address in
EPC?

Invariant 3

Yes
b

No

:

Page Fault = At all times when an LP is in

!
EPCM onts enclave mode, the TLB entries for
Yes y No . . .
I blocked? 3 virtual addresses inside the

Read EPCM entry for
the physical address

Page Fault EPCM current enclave’s ELRANGE
[ ves entytypels >~ No— (Enclave Linear Address Range )

must match the virtual memory
layout specified by the enclave
author.

Page Fault

EPCM
entry EID equals
current enclave’s

No ID? Yes
' y
Page Fault
EPCM entry
ADDRESS equals translated
No virtual address? Yes
¢ v
Modify TLB entry flags
Page Fault according to EPCM entry

v

Insert new entry in TLB
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The entire flow

Top-level invariant: At all
times, all the TLB entries in
every logical processor will
be consistent with SGX’s
security guarantees.

Invariant 1

Invariant 2

Invariant 3

/

Perform Address Translation using FSM ‘

Physical
address

¥
Prepare TLB e |

Executing
enclave

in/TLB

Insertr/ngw entry

Set XD attribute

on TLB entry

!

Insert new entry

in TLB /

Physical
address in

/ 4

entry for
the physical address

} Page Fault
EPCM entry
e blocked? No
Page Fault
l— Yes entry type is No _l
PT_REG?
Page Fault
entry EID equals
current enclave’s
No Yes
' '
Page Fault T
'?CM enﬁ'
—=_ ADDRESS equals translated
No —___virtual addre?&- es
Mgdify TLB entry flags
Page Fault ording to EPCM entry

]
Insert new entry in TLB ‘ 36
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Tracking TLB Flushes

Tracking TLB flushes is equivalent to verifying that all the logical
processors have exited Enclave mode at least once after we start
tracking.

We rely on the SECS to store variables for tracking.
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Tracking TLB Flushes

= ECREATE

= SECS.tracking = False

= SECS.done-tracking = False
= SECS.active-threads = 1

= SECS.tracked-threads = 0

= SECS.Ip-mask = [0,0,0,0]
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Tracking TLB Flushes

= ETRACK
- Start of a TLB tracking cycle

= SECS.tracking = True

= SECS.done-tracking = False
= SECS.active-threads = 4

= SECS.tracked-threads = 4

= SECS.Ip-mask = [0,0,0,0]
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Tracking TLB Flushes

= EEXIT

= SECS.tracking = True

= SECS.done-tracking = False
= SECS.active-threads = 3

= SECS.tracked-threads = 3

= SECS.Ip-mask = [1,0,0,0]
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Tracking TLB Flushes

= EENTER

= SECS.tracking = True

= SECS.done-tracking = False
= SECS.active-threads = 4

= SECS.tracked-threads = 3

= SECS.Ip-mask = [1,0,0,0]
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Tracking TLB Flushes

= EEXIT

= SECS.tracking = True

= SECS.done-tracking = True
= SECS.active-threads = 1

= SECS.tracked-threads = 0
= SECS.lp-mask = [1,1,1,1]
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Tracking TLB Flushes

= EWB-VERIFY

= SECS.tracking = True

= SECS.done-tracking = True
= SECS.active-threads = 1

= SECS.tracked-threads = 0
= SECS.lp-mask = [1,1,1,1]
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Tracking TLB Flushes

= EBLOCK
- End of a TLB tracking cycle

= SECS.tracking = False

= SECS.done-tracking = True
= SECS.active-threads = 1

= SECS.tracked-threads = 0
= SECS.Ip-mask = [1,1,1,1]
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Enclave Signature Verification

= Let m be the public modulus in the enclave author’s RSA key, and s
be the enclave signature. Public exponent e is 3,

= Verifying the RSA signature M = s3 mod m
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RSA signature verification Algorithm

. Compute u <— s X sand v <— q1 X m

2
q1 = 'SJ 2. It u < v, abort. ¢ must be incorrect.
1
_— | 3. Compute w <— u© — v
§7 —q1 X s Xm
12 = m J 4. It w > m, abort. ¢; must be incorrect. 9
. 0<s“"—qg Xm<m
Avoid division and modulo 5. Compute x < w x s and y + g3 X m

operations.
6. If » < vy, abort. go must be incorrect.

7. Compute 2  x — 1. OD<wXs—g Xm<m
= w X s mod m

w
|

9 8. If = > m, abort. ¢go must be incorrect.
= (s” mod m) X s mod m

— 52 x s mod m

— s mod m

9. Output z.
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SGX Security Properties

An isolated container whose contents receive special hardware

protection that intended to translate into privacy, integrity and
freshness guarantees.

Offers a certificate-based identity system that can be used to

migrate secrets between enclaves that have certificates issued by the
same authority.
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Physical Attacks

Lack of publicly available details about the hardware implementation
of SGX => some avenues for future exploration

Port attack, especially Generic Debug eXternal Connection.
Bus attack, because the data in cache is in plaintext.

Bus tapping attack, because SGX does not hide the memory access
patterns.

Cache timing attack.
Intel Management Engine may be not protected.
Fused seal key. -> PUF

Power analysis
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Privileged Software Attacks

The SGX design prevents malicious software from directly reading or

from modifying the EPC pages that store an enclave’s code and data.

This relies on two pillars (isolation principle):

First, the SGX implementation runs in the processor’s
microcode, which is effectively a higher privilege level that
system software does not have access to.

Second, SGX’s microcode is always involved when a CPU transitions
between enclave code and non-enclave code, and therefore
regulates all interactions between system software and an enclave’s
environment
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Memory Mapping Attacks

SGX can prevent active attacks by rejecting undesirable address
translations before they reach the TLB. Also, it prevents the active
attacks using page swapping or stale TLB entries.

Passive address translation attacks can learn the memory access
patterns.
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Software Attacks on Peripherals

PCl (Peripheral Controller Interface)
Express attacks are prevented, because
MC rejects any DMA transfer that falls
within the Processor Reserved Memory

DRAM attacks (e.g. Rowhammer) are
prevented due to MEE.

Firmware attacks (especially, ME’s
firmware) are not mentioned in the
documents. (ME compromise = DRAM
attacks)

SGX does not protect against software
side-channel attacks that rely on
performance counters (e.g. cache
misses, branch predictors).

é—
=
vz
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Cache Timing Attacks

Cache timing attacks are not mentioned
in the threat model.

A malicious system software can make it
WOorse.

Control the enclave scheduling

Control address translation

SGX does not prevent this attack, but
increases the difficulties: SGX’s enclave
entry implementation could flush the
core’s private caches.

The Last Level Cache is still vulnerable,

because it is shared among all the cores.

Cache

RAM

Kernel

Victim

[ 1 CacheLine

[ | Page
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Misconceptions about SGX

] ] CPU e-fuses
= RemOte attestathl’l relleS on the Seal || Provisioning
Quoting Enclave with special foy LK

privileges that allows it to access
the processor’s attestation key.

- This assumes the Enclave is isolated
properly, but this is not true (e.g.
cache side channel).

Attested Enclave

Key Agreement

Key Agreement

- Intel suggests the programmer to
remove data dependent memory
access, especially for crypto
algorithms.

Encrypted

Attestation Key

Message 2 Message 1
I
vy ¥
» EREPORT |« Report Data
»  Report
Quoting Enclave
Reporting Report
Key " | Verification
\d
| Provisioning Attestation ||
Seal Key Signature
v A
Authenticated _| Attestation
Encryption Key

Challenge —

— Response —»|

Remote
Party in
Software
Attestation
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Misconceptions about SGX

= Enclaves Can DOS (Denial-of-service) the System Software x

- The SGX design provides system software the capability to protect itself from
enclaves that engage in CPU hogging and DRAM hogging.

- System software needs to reserve at least one LP for non-enclave computation.

= SGX is tamper-resistant I
- The chip itself does not prevent physical tampering.
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Interaction with Anti-Virus Software

Today’s anti-virus (AV) systems are pattern matchers.

1. A generic loader that is undetectable by AV’s pattern matcher.

2. Load encrypted malicious payload from Internet.

3. Execute malicious code inside the Enclave. (botnets?)

Possible solutions:
recording and filtering the I/O performed by software

Static analysis
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