
CSE 5095 & ECE 6095 – Spring 2016 – Instructor Marten van Dijk

Chenglu Jin, S. K. Haider, M. Ahmad and H. Omar
Department of Electrical & Computer Engineering

University of Connecticut

Email: chenglu.jin@uconn.edu

SGX Analysis

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

2

Memory Encryption Engine
 Memory Encryption Engine (MEE):

 Added in the uncore part of the processor (Memory Controller)

 protects SGX’s Enclave Page Cache against physical attacks.

 Data Confidentiality: Collections of memory images of DATA written to the DRAM cannot be
distinguished from random data.

 Integrity + freshness: DATA read back from DRAM to LLC is the same DATA that was most recently
written from LLC to DRAM.

3

4

Unauthorized DMA
transactions that
target the PRM
(Processor Reversed
Memory) range
should be aborted.

5

Encryption Key: 128 bits
MAC Key: 128 bits
Hash Key: 512 bits

Message Authentication Code
 MAC can be used to protected memory integrity.

 But what is the problem if we only use MAC?

 Reply attack

 Solutions:

 1. Hash Tree (Store updated root hash in TCB)
 One root hash for the whole memory

 2. Stateful MAC (Store updated states in TCB)
 One state for each cache line

 How to store all the states efficiently???

6

One level data structure

7

Tag = MAC (CTR, CL)

CTR is trusted

Integrity + freshness

Too many counters in trusted
region. Too expensive!

8

Embedded MAC tags

9

Embedded MAC tags into
counter cache line to save
the memory accesses.

Why don’t we embed
tags into data cache
lines as well?

A Counter Cache Line

10

Tag

Counter

56 * 8 + 56 + 8 = 512

56-bit counters
56-bit tags

11

Counter
Cache
Lines

Data Cache
Line

Tag Cache Line

What is the
compression
rate?

12

Comparison with Hash Tree

13

Access
this data

14

More details
 How to encrypt?

 How to compute MAC?

 Background: AES (Advanced Encryption Standard)

 AES-128: 128-bit plaintext, 128-bit ciphertext, 128-bit key

15

16

Confidentiality Bound

17

18

MEE Forgery Resistance

19

Proof
 Use the main theorem in [5], which proves the security bounds for

such a MAC construction for us.

 First, we need to compute Maximum Interpolation Probability for
function f(b) = Truncatet(AES(K,b))

20[5] Bernstein D J. Stronger security bounds for Wegman-Carter-Shoup authenticators[M] EUROCRYPT’05

Inequalities needed in proof
 (1)

 1 − 𝑎1 ∗ 1 − 𝑎2 ∗ ⋯∗ 1 − 𝑎𝑘 ≥ 1 − (𝑎1 + 𝑎2 +⋯+ 𝑎𝑘) for any 𝑎𝑗 ≥ 0

such that 𝑗=1
𝑘 𝑎𝑗 ≤ 1

 (2)


1

1−𝑤
≤ 1 + 2𝑤 for 0 < 𝑤 ≤ 0.5

21

MEE Forgery Resistance

22

In order to maximize Psuccess, the attacker need to collect 256 – 2 MACs. But due
to the cost of collecting the trace, an efficient strategy for an attacker would be
blind guessing with probability 1/256

Are 56-bit tags and 56-bit counters
secure enough?

 Rollover 56-bit counter -> 10.5 years

 Forgery 56-bit tag -> 2M years
 Assuming 1000 forge root per second.

24

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

25

SGX Memory Access Protection
 MEE sits in MC, it cannot protect an enclave’s memory from software

attacks.

 The root of SGX’s protections against software attacks is memory
access checks which prevents the currently running software from
accessing memory that does not belong to it.

 Implemented in Page Miss Handler (PMH)

 PMH triggers the extra microcode for all address translations

 All the SGX instructions are implemented in microcode, which
introduces many new registers for storing metadata of
enclave.

26

Security Check for Memory
Access

29

SGX adds a few security checks to the PMH. The
checks ensure that all the TLB entries created by
the address translation unit meet SGX’s memory
access restrictions.

SGX Security Check Correctness
 Top-level invariant: At all times, all the TLB entries in every logical

processor will be consistent with SGX’s security guarantees.

 First breakdown the top level invariant into three cases on:
 whether a logical processor (LP) is executing enclave code or not

 whether the TLB entries translate virtual addresses in the current enclave’s
ELRANGE

31

Case Invariants
 1. At all times when an LP is outside enclave mode, its TLB may only

contain physical addresses belonging to DRAM pages outside the
PRM.

 2. At all times when an LP is inside enclave mode, the TLB entries for
virtual addresses outside the current enclave’s ELRANGE must
contain physical addresses belonging to DRAM pages outside the
PRM.

 3. At all times when an LP is in enclave mode, the TLB entries for
virtual addresses inside the current enclave’s ELRANGE (Enclave
Linear Address Range) must match the virtual memory layout
specified by the enclave author.

32

Proof of Invariant 1
 At all times when an LP is outside

enclave mode, its TLB may only
contain physical addresses
belonging to DRAM pages outside
the PRM.

33

Proof of Invariant 2
 At all times when an LP is inside

enclave mode, the TLB entries for
virtual addresses outside the current
enclave’s ELRANGE (Enclave Linear
Address Range) must contain physical
addresses belonging to DRAM pages
outside the PRM.

34

Proof of Invariant 3
 At all times when an LP is in

enclave mode, the TLB entries for
virtual addresses inside the
current enclave’s ELRANGE
(Enclave Linear Address Range)
must match the virtual memory
layout specified by the enclave
author.

35

The entire flow

36

Invariant 1

Invariant 2

Invariant 3

Top-level invariant: At all
times, all the TLB entries in
every logical processor will
be consistent with SGX’s
security guarantees.

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

39

Tracking TLB Flushes
 Tracking TLB flushes is equivalent to verifying that all the logical

processors have exited Enclave mode at least once after we start
tracking.

 We rely on the SECS to store variables for tracking.

40

Tracking TLB Flushes
 ECREATE

 SECS.tracking = False

 SECS.done-tracking = False

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [0,0,0,0]

41

E NE

NE NE

Tracking TLB Flushes
 ETRACK

 Start of a TLB tracking cycle

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 4

 SECS.tracked-threads = 4

 SECS.lp-mask = [0,0,0,0]

42

E E

E E

Tracking TLB Flushes
 EEXIT

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 3

 SECS.tracked-threads = 3

 SECS.lp-mask = [1,0,0,0]

43

NE E

E E

Tracking TLB Flushes
 EENTER

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 4

 SECS.tracked-threads = 3

 SECS.lp-mask = [1,0,0,0]

44

E E

E E

Tracking TLB Flushes
 EEXIT

 SECS.tracking = True

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]

45

E NE

NE NE

Tracking TLB Flushes
 EWB-VERIFY

 SECS.tracking = True

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]

46

E NE

NE NE

Tracking TLB Flushes
 EBLOCK

 End of a TLB tracking cycle

 SECS.tracking = False

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]

47

E NE

NE NE

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

52

Enclave Signature Verification
 Let m be the public modulus in the enclave author’s RSA key, and s

be the enclave signature. Public exponent e is 3,

 Verifying the RSA signature M = s3 mod m

53

RSA signature verification Algorithm

54

Avoid division and modulo
operations.

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

55

SGX Security Properties
 An isolated container whose contents receive special hardware

protection that intended to translate into privacy, integrity and
freshness guarantees.

 Offers a certificate-based identity system that can be used to
migrate secrets between enclaves that have certificates issued by the
same authority.

56

Physical Attacks
 Lack of publicly available details about the hardware implementation

of SGX => some avenues for future exploration

 Port attack, especially Generic Debug eXternal Connection.

 Bus attack, because the data in cache is in plaintext.

 Bus tapping attack, because SGX does not hide the memory access
patterns.

 Cache timing attack.

 Intel Management Engine may be not protected.

 Fused seal key. -> PUF

 Power analysis

57

Privileged Software Attacks
 The SGX design prevents malicious software from directly reading or

from modifying the EPC pages that store an enclave’s code and data.

 This relies on two pillars (isolation principle):

 First, the SGX implementation runs in the processor’s
microcode, which is effectively a higher privilege level that
system software does not have access to.

 Second, SGX’s microcode is always involved when a CPU transitions
between enclave code and non-enclave code, and therefore
regulates all interactions between system software and an enclave’s
environment

58

Memory Mapping Attacks
 SGX can prevent active attacks by rejecting undesirable address

translations before they reach the TLB. Also, it prevents the active
attacks using page swapping or stale TLB entries.

 Passive address translation attacks can learn the memory access
patterns.

59

Software Attacks on Peripherals
 PCI (Peripheral Controller Interface)

Express attacks are prevented, because
MC rejects any DMA transfer that falls
within the Processor Reserved Memory

 DRAM attacks (e.g. Rowhammer) are
prevented due to MEE.

 Firmware attacks (especially, ME’s
firmware) are not mentioned in the
documents. (ME compromise = DRAM
attacks)

 SGX does not protect against software
side-channel attacks that rely on
performance counters (e.g. cache
misses, branch predictors).

60

Cache Timing Attacks
 Cache timing attacks are not mentioned

in the threat model.

 A malicious system software can make it
worse.
 Control the enclave scheduling

 Control address translation

 SGX does not prevent this attack, but
increases the difficulties: SGX’s enclave
entry implementation could flush the
core’s private caches.

 The Last Level Cache is still vulnerable,
because it is shared among all the cores.

61

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

62

Misconceptions about SGX
 Remote attestation relies on the

Quoting Enclave with special
privileges that allows it to access
the processor’s attestation key.
 This assumes the Enclave is isolated

properly, but this is not true (e.g.
cache side channel).

 Intel suggests the programmer to
remove data dependent memory
access, especially for crypto
algorithms.

63

Misconceptions about SGX
 Enclaves Can DOS (Denial-of-service) the System Software

 The SGX design provides system software the capability to protect itself from
enclaves that engage in CPU hogging and DRAM hogging.

 System software needs to reserve at least one LP for non-enclave computation.

 SGX is tamper-resistant
 The chip itself does not prevent physical tampering.

64

Outline
 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

 Tracking TLB Flushes

 Enclave Signature Verification

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

65

Interaction with Anti-Virus Software

 Today’s anti-virus (AV) systems are pattern matchers.

 1. A generic loader that is undetectable by AV’s pattern matcher.

 2. Load encrypted malicious payload from Internet.

 3. Execute malicious code inside the Enclave. (botnets?)

 Possible solutions:
 recording and filtering the I/O performed by software

 Static analysis

66

References
 [1] Costan V, Devadas S. Intel sgx explained[R]. Cryptology ePrint

Archive, Report 2016/086, 20 16. http://eprint. iacr. org.

 [2] SGX Tutorial on ISCA 2015.

 [3] Gueron S. Intel® Software Guard Extensions (Intel® SGX) Memory
Encryption Engine (MEE), RWC 2016.

 [4] Gueron S. A Memory Encryption Engine Suitable for General
Purpose Processors[J].

 [5] Bernstein D J. Stronger security bounds for Wegman-Carter-
Shoup authenticators[M]//Advances in Cryptology–EUROCRYPT
2005. Springer Berlin Heidelberg, 2005: 164-180.

67

