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Memory Encryption Engine
 Memory Encryption Engine (MEE):

 Added in the uncore part of the processor (Memory Controller)

 protects SGX’s Enclave Page Cache against physical attacks. 

 Data Confidentiality: Collections of memory images of DATA written to the DRAM cannot be 
distinguished from random data. 

 Integrity + freshness: DATA read back from DRAM to LLC is the same DATA that was most recently 
written from LLC to DRAM.
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Unauthorized DMA 
transactions that 
target the PRM 
(Processor Reversed 
Memory) range 
should be aborted.
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Encryption Key: 128 bits
MAC Key: 128 bits
Hash Key: 512 bits



Message Authentication Code
 MAC can be used to protected memory integrity. 

 But what is the problem if we only use MAC? 

 Reply attack

 Solutions: 

 1. Hash Tree (Store updated root hash in TCB) 
 One root hash for the whole memory

 2. Stateful MAC (Store updated states in TCB) 
 One state for each cache line 

 How to store all the states efficiently???
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One level data structure
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Tag = MAC (CTR, CL)

CTR is trusted

Integrity + freshness

Too many counters in trusted 
region. Too expensive!
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Embedded MAC tags
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Embedded MAC tags into 
counter cache line to save 
the memory accesses. 

Why don’t we embed 
tags into data cache 
lines as well? 



A Counter Cache Line
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Tag

Counter

56 * 8 + 56 + 8 = 512

56-bit counters
56-bit tags
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Counter 
Cache 
Lines

Data Cache 
Line

Tag Cache Line

What is the 
compression 
rate?
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Comparison with Hash Tree
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Access 
this data
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More details
 How to encrypt?

 How to compute MAC?

 Background: AES (Advanced Encryption Standard)

 AES-128: 128-bit plaintext, 128-bit ciphertext, 128-bit key

15



16



Confidentiality Bound
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MEE Forgery Resistance
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Proof
 Use the main theorem in [5], which proves the security bounds for 

such a MAC construction for us. 

 First, we need to compute Maximum Interpolation Probability for 
function f(b) = Truncatet(AES(K,b)) 

20[5] Bernstein D J. Stronger security bounds for Wegman-Carter-Shoup authenticators[M] EUROCRYPT’05



Inequalities needed in proof
 (1) 

 1 − 𝑎1 ∗ 1 − 𝑎2 ∗ ⋯∗ 1 − 𝑎𝑘 ≥ 1 − (𝑎1 + 𝑎2 +⋯+ 𝑎𝑘) for any 𝑎𝑗 ≥ 0

such that  𝑗=1
𝑘 𝑎𝑗 ≤ 1

 (2)


1

1−𝑤
≤ 1 + 2𝑤 for 0 < 𝑤 ≤ 0.5
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MEE Forgery Resistance
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In order to maximize Psuccess, the attacker need to collect 256 – 2 MACs. But due 
to the cost of collecting the trace, an efficient strategy for an attacker would be 
blind guessing with probability 1/256



Are 56-bit tags and 56-bit counters 
secure enough?

 Rollover 56-bit counter -> 10.5 years

 Forgery 56-bit tag -> 2M years
 Assuming 1000 forge root per second.  
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SGX Memory Access Protection
 MEE sits in MC, it cannot protect an enclave’s memory from software 

attacks.

 The root of SGX’s protections against software attacks is memory 
access checks which prevents the currently running software from 
accessing memory that does not belong to it.

 Implemented in Page Miss Handler (PMH)

 PMH triggers the extra microcode for all address translations

 All the SGX instructions are implemented in microcode, which 
introduces many new registers for storing metadata of 
enclave. 
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Security Check for Memory 
Access
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SGX adds a few security checks to the PMH. The 
checks ensure that all the TLB entries created by 
the address translation unit meet SGX’s memory 
access restrictions.



SGX Security Check Correctness
 Top-level invariant: At all times, all the TLB entries in every logical 

processor will be consistent with SGX’s security guarantees.

 First breakdown the top level invariant into three cases on:
 whether a logical processor (LP) is executing enclave code or not

 whether the TLB entries translate virtual addresses in the current enclave’s 
ELRANGE
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Case Invariants
 1. At all times when an LP is outside enclave mode, its TLB may only 

contain physical addresses belonging to DRAM pages outside the 
PRM.

 2. At all times when an LP is inside enclave mode, the TLB entries for 
virtual addresses outside the current enclave’s ELRANGE must 
contain physical addresses belonging to DRAM pages outside the 
PRM.

 3. At all times when an LP is in enclave mode, the TLB entries for 
virtual addresses inside the current enclave’s ELRANGE (Enclave 
Linear Address Range ) must match the virtual memory layout 
specified by the enclave author.
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Proof of Invariant 1
 At all times when an LP is outside 

enclave mode, its TLB may only 
contain physical addresses 
belonging to DRAM pages outside 
the PRM.
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Proof of Invariant 2
 At all times when an LP is inside 

enclave mode, the TLB entries for 
virtual addresses outside the current 
enclave’s ELRANGE (Enclave Linear 
Address Range) must contain physical 
addresses belonging to DRAM pages 
outside the PRM.
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Proof of Invariant 3
 At all times when an LP is in 

enclave mode, the TLB entries for 
virtual addresses inside the 
current enclave’s ELRANGE 
(Enclave Linear Address Range ) 
must match the virtual memory 
layout specified by the enclave 
author.
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The entire flow
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Invariant 1

Invariant 2

Invariant 3

Top-level invariant: At all 
times, all the TLB entries in 
every logical processor will 
be consistent with SGX’s 
security guarantees.
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Tracking TLB Flushes
 Tracking TLB flushes is equivalent to verifying that all the logical 

processors have exited Enclave mode at least once after we start 
tracking. 

 We rely on the SECS to store variables for tracking. 
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Tracking TLB Flushes
 ECREATE

 SECS.tracking = False

 SECS.done-tracking = False

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [0,0,0,0]
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NE NE



Tracking TLB Flushes
 ETRACK

 Start of a TLB tracking cycle

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 4

 SECS.tracked-threads = 4

 SECS.lp-mask = [0,0,0,0]
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Tracking TLB Flushes
 EEXIT

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 3

 SECS.tracked-threads = 3

 SECS.lp-mask = [1,0,0,0]
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Tracking TLB Flushes
 EENTER

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 4

 SECS.tracked-threads = 3

 SECS.lp-mask = [1,0,0,0]
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Tracking TLB Flushes
 EEXIT

 SECS.tracking = True

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]
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Tracking TLB Flushes
 EWB-VERIFY

 SECS.tracking = True

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]
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Tracking TLB Flushes
 EBLOCK

 End of a TLB tracking cycle

 SECS.tracking = False

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]
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Enclave Signature Verification
 Let m be the public modulus in the enclave author’s RSA key, and s

be the enclave signature.  Public exponent e is 3,  

 Verifying the RSA signature M = s3 mod m
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RSA signature verification Algorithm
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Avoid division and modulo 
operations. 
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SGX Security Properties
 An isolated container whose contents receive special hardware 

protection that intended to translate into privacy, integrity and 
freshness guarantees.

 Offers a certificate-based identity system that can be used to 
migrate secrets between enclaves that have certificates issued by the 
same authority. 

56



Physical Attacks
 Lack of publicly available details about the hardware implementation 

of SGX => some avenues for future exploration

 Port attack, especially Generic Debug eXternal Connection.

 Bus attack, because the data in cache is in plaintext. 

 Bus tapping attack, because SGX does not hide the memory access 
patterns. 

 Cache timing attack. 

 Intel Management Engine may be not protected. 

 Fused seal key. -> PUF

 Power analysis
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Privileged Software Attacks
 The SGX design prevents malicious software from directly reading or 

from modifying the EPC pages that store an enclave’s code and data.

 This relies on two pillars (isolation principle):

 First, the SGX implementation runs in the processor’s 
microcode, which is effectively a higher privilege level that 
system software does not have access to.

 Second, SGX’s microcode is always involved when a CPU transitions 
between enclave code and non-enclave code, and therefore 
regulates all interactions between system software and an enclave’s 
environment
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Memory Mapping Attacks
 SGX can prevent active attacks by rejecting undesirable address 

translations before they reach the TLB. Also, it prevents the active 
attacks using page swapping or stale TLB entries.

 Passive address translation attacks can learn the memory access 
patterns.
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Software Attacks on Peripherals
 PCI (Peripheral Controller Interface) 

Express attacks are prevented, because 
MC rejects any DMA transfer that falls 
within the Processor Reserved Memory

 DRAM attacks (e.g. Rowhammer) are 
prevented due to MEE. 

 Firmware attacks (especially, ME’s 
firmware) are not mentioned in the 
documents. (ME compromise = DRAM 
attacks)

 SGX does not protect against software 
side-channel attacks that rely on 
performance counters (e.g. cache 
misses, branch predictors).
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Cache Timing Attacks
 Cache timing attacks are not mentioned 

in the threat model. 

 A malicious system software can make it 
worse. 
 Control the enclave scheduling

 Control address translation

 SGX does not prevent this attack, but 
increases the difficulties: SGX’s enclave 
entry implementation could flush the 
core’s private caches. 

 The Last Level Cache is still vulnerable, 
because it is shared among all the cores. 
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Misconceptions about SGX
 Remote attestation relies on the 

Quoting Enclave with special 
privileges that allows it to access 
the processor’s attestation key. 
 This assumes the Enclave is isolated 

properly, but this is not true (e.g. 
cache side channel).

 Intel suggests the programmer to 
remove data dependent memory 
access, especially for crypto 
algorithms. 
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Misconceptions about SGX
 Enclaves Can DOS (Denial-of-service) the System Software

 The SGX design provides system software the capability to protect itself from 
enclaves that engage in CPU hogging and DRAM hogging. 

 System software needs to reserve at least one LP for non-enclave computation.

 SGX is tamper-resistant
 The chip itself does not prevent physical tampering. 
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Interaction with Anti-Virus Software

 Today’s anti-virus (AV) systems are pattern matchers.

 1. A generic loader that is undetectable by AV’s pattern matcher.

 2. Load encrypted malicious payload from Internet.

 3. Execute malicious code inside the Enclave. (botnets?)

 Possible solutions: 
 recording and filtering the I/O performed by software

 Static analysis
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