
SANDBOXING
NATIVE CLIENT

PRESENTED BY : HAMZA OMAR

1

1. What is a Sandbox ?

2. Google Native Client

3. Demo for Native Client

4. Symbolic Execution

5. Demo for Symbolic Execution

2

OUTLINE

 In computer security, a sandbox is a security mechanism for separating running
programs. It is often used to execute untested code, or untrusted programs from
unverified third parties, suppliers, untrusted users and untrusted websites.

 A sandbox typically provides a tightly controlled set of resources for guest programs
to run in, such as scratch space on disk and memory

 Sandboxing is frequently used to test unverified programs that may contain a virus
or other malicious code, without allowing the software to harm the host device.

3

WHAT IS A SANDBOX?

NATIVE CLIENT
 Google Native Client (NaCl) is a sandboxing technology for running a subset of Intel x86/x86-
64, ARM or MIPS native code in a sandbox. It allows safely running native code from a web
browser, independent of the user operating system, allowing web-based applications to run at
near-native speeds.

 Real world system deployed by GOOGLE in their CHROME browser.

 It uses arbitrary native code with the help of isolation, sandboxing technique also called
software fault isolation.

 Software Fault Isolation does not rely on the operating system to sandbox instead it looks at
the binaries through a different approach to check whether it is safe to use the code or not.

4

WHY NATIVE CODE ?
Web browsers already support JavaScript, flash or many others of kind. Why do we need native
code then ?

 PERFORMANCE - The native code is unsafe from some perspectives but is really fast.

 LEGACY CODES – Not everything is written in JavaScript, so if we have an existing code that we
want to run on a web application. No need for re-implementing.

 SUPPORT FOR OTHER LANGUAGES – If we don’t want to use JavaScript, we can use some
other languages like C, C++, Python etc.

5

WHAT IS GOING ON !!

6

BROWSER PAGE JS CODE
NACL

MODULE

SECURING NATIVE CODE
 Trust the developer or ask the user whether they want to run a piece of code in their browser
or not.
 There might be a case, where the website asks the user to open up a page, and if user says yes, the

page gets re-directed and crashes the browser.

 Active X by Microsoft etc.

 Native Client gives the guarantee that if you run this program, no harm will come to you.

 This gives users the confidence to trust.

 OS/HW isolation.
Write a code in a OS that ensures isolation and sandboxing, like UNIX, capsicum etc.

 There can be OS bugs and some OS are not compatible with each other.

We have to worry about what code we actually write inside a sandbox and it’s compatibility with the
OS.

 Native Client does not worry about these problems because it runs the same code which runs on any
OS.

7

SOFTWARE FAULT ISOLATION
 The plan is actually not to rely on the OS to check the code at the run time rather look ahead of
time that this code is safe or not for the system.

 Check ahead of time the binaries of the instructions whether these are safe instructions or un-safe.

 If instructions are SAFE, just allow them to pass.
 What are actually safe instructions ? ALU, some mathematic instructions, move etc.
 Do computations on its own little memory, meaning it can not access the disk, can not access the network

etc.

 If instructions are UNSAFE, either instrument the instruction or prohibit it.
 Instrumenting instruction means to introduce for example some checks before an access. By this we do not

rely on the OS.
 Unsafe instructions are actually memory accesses, instructions which could invoke a system call to switch

privilege levels etc.

When we are done with checking, we can run the program and by definition it will not do bad things
to our system.

8

INSTRUMENTING INSTRUCTIONS

9

A = MEM. Location
X MEM[A]

A = MEM. Location
IF (A == range)

X MEM[A]
ELSE

EXIT()

ACCESS to A = 100
CRUCIAL DATA

LOCATION ADDRESS

CONFIRMED
ACCESS to A = 2020

TRUSTED SERVICE RUNTIME
 Now the code within the sandbox is safe, it will run absolutely fine. It would not access the
disk, will not access the browser, the display, will not access the network etc. instead it would
just work on its own little chunk of resources allocated.

 Even if the code somehow, does not function in a safe way, a special service code has been
provided by GOOGLE which is called Trusted Service Runtime.

 TSR actually gives the final assurance that the code is now safe.

When the code inside the sandbox wants to allocate memory, spawn threads, or communicate
to the browser, etc. It actually sends a call to the TSR and TSR does all things for that code.

10

SAFETY
 For a native client safety means;

1. No disallowed instructions are going to execute like system calls etc.

2. No disallowed calls to jump out of the sandbox.

3. All code + data accesses are in bounds for the module.

11

Usually a space of 0 to 256 MB
is provided to the module. So
all the work must be with in
this address space.

NAIVE APPROACH FOR SAFETY

12

25 CD 80 00 00

5 byte instruction 4 byte instruction

AND INSTRUCTION

INTERRUPT INSTRUCTION

SAFE

UNSAFE

NOP NOT ADD JMP

0 256MB

x86 has variable
length instructions

RELIABLE DISASSEMBLY – NATIVE CLIENT

13

NOP NOT ADD JMP

0 256MB

If we have a JUMP instruction in the application, and it jumps to a point which we did not see
during our left to right scan by the core.

If we have a JUMP instruction in the application, we will check whether the destination has
been seen before if YES then OK otherwise the jump is INVALID.

25 CD 80 00 00

NOW WHAT ?

RULES

14

1. NACL’s plan relies on binaries, if
perturbed their system is broken thus
their prevent writing to the binary once
loaded.

2. They just have set a standard for
simplicity.

3. These indirect jumps must be
instrumented and checked for the target.
Also, they should jump in multiples of 32.

4. In order to terminate the module as soon
as the instructions are completed. And
no jump instruction causes the core to
jump out of the boundary of the module.

RULES

15

1. A
2. Da
3. Ada
4. Ad
5. Every multiple of 32 must be a valid

instruction otherwise we will jump
into the middle of an instruction.

6. So that we can check every
instruction at run time.

7. Same case of jumps that we
discussed previously.

AND

64

SEGMENTATION
Whenever a processor is running there is a table maintained by the hardware called segment
descriptor table. It has a bunch of segments having two values BASE and LENGTH.

 It shows that for a segment we have a chunk of memory which starts from the base address
and ends at base + length.

 Instructions when accessing memory always point to a specific segment depending on the
usage.

 Code segment, data segment, stack segment etc. discussed in the SGX slides.

 For example, MOV [A] [B]. A and B will used by the data segment which will take it’s respective
base address from the SGT and move the addresses.

16

So we need to prohibit MOV instructions in such a way that once a segment register gets a value
it cannot be changed.

TRAMPOLINE - SPRINGBOARDS
Trampoline:

 For instructions requiring use of segment
registers, native client module uses jumps into
a special address space called a trampoline.

 In the trampoline, it performs all the
operations using segment registers and
segment descriptor table and jumps back to its
module.

Springboards:

When the segments registers are set by the
instruction from the untrusted module, the
trusted code first HALTS until the values are
consumed.

When done, it resets the values of segment
registers back to their original states.

17

NaCL DEMO

18

19

20

21

22

23

SYMBOLIC EXECUTION
 Symbolic Execution is a mean of analyzing a program to determine what inputs cause each part
of a program to execute.

24

IF will execute for y == 6

ELSE will execute for y != 6

25

SYMBOLIC EXECUTION

SYMBOLIC EXECUTION

26

