
CSE 5095 & ECE 6095 – Spring 2016 – Instructor Marten van Dijk

Hoda Maleki
Department of Electrical & Computer Engineering

University of Connecticut

Email: hoda.maleki@engr.uconn.edu

User Authentication

Lecture Your System Security Topic #

Based on and extracted from Nickolai Zeldovitch, Computer System Security, course material at

http://css.csail.mit.edu/6.858/2014/

And paper: “Honeywords: Making Password-Cracking Detectable” by Juels, Rivest, 2013 and paper:

"The quest to replace passwords: A framework for comparative evaluation of web authentication

schemes“ by Bonneau, Joseph, et al., SP, IEEE, 2012.

With help from Marten van Dijk

http://css.csail.mit.edu/6.858/2014/

Outline

 Definition of Authentication

 User Authentication factors

 Password

 Evaluation Factors

 Compare Different User Authentication Factors

 Multi Factor Authentication

 Honeyword

 Motivation

 Definition of Honeyword

 Honeyword Generation Methods

User Authentication

 User Authentication: Is the process of verifying the identity of a person who wants to
access the system by comparing the information given by the user and what is stored
in the system’s database.

Authentication factors

 Something user knows (i.e. password)

 Something user has (i.e. smart card)

 Something user is (i.e. biometric information such as fingerprint)

Something you know

 Is the most common authentication factor, which is also the easiest to attack and
beat.

 Examples: Password, PIN (Personal Identification Number)

 Methods of storage:

 Clear text

 Hashed password

 Hashed with sault

 others

 Suggestion: select long password (at least 15 character) which you are able to
remember and be combination of capital letter, small letter, number, and special
characters.

Something you possess

 Is an item such as smart card or token with embedded certificate that is used to
identify the user.

 Smart card: Contains credentials which certifies it’s owner when is inserted into the
reader.

 Token: Is a device that each time generates a number. This number is synchronized
with an authentication server.

 It is better to combine it with other authentication methods.

 E.g. smart card with PIN

 E.g. token with user and password

Something you are

 Biometric methods such as fingerprint, iris scan provide factors that the user is for
authentication.

 Most common biometric method is fingerprint. Laptops and cellphones mostly have
fingerprint readers.

Password (Something you know)

 Currently, username/password is mostly used for user authentication.

 Passwords

 Low entropy (how to calculated entropy?)

 Back-up security questions with low entropy

 A single password is often used for multiple sites.

 Is there any authentication scheme which totally dominates passwords?

 In order to answer this question we have to have a look at the password scheme and how it works,

 Desirable properties for authentication scheme

 Compare other schemes with password

How password works?

 What is password?

 A secret shared between the user and the server.

 Implementation:

 Save in clear text

 Issue: passwords are in cleartext. By compromising the server, adversary can recover all user/password pairs.

 Use hash functions in order to store the password

 How it works? User sends the password in clear text, server applies the hash function and does a table look up.

 Issue: adversary may apply dictionary attack.

 Reason: top 5000 password values cover 20% of users.

 attacker is able to optimize the hash function to be applied faster (i.e. zero-based optimization)

How password works?

 Use key-derivation function, such as PBKDF2 or Bcrypt.

 More calculation needs to be done, can be slow.

 Issue: build rainbow table

 Use salt to hash a password.

 Salt: additional random input that is added to the password before applying hash function.

 Stores in plaintext.

 Why better? Adversary cannot use a single rainbow table, since different salts are added to the same password that results in
different hashed value.

 Strength: long salts, change salt whenever password is changed by the user.

Password transition

 Different solutions, such as send in plain text, use encryption, hashed password.

 Issue: man-in –the-middle attack (server doesn’t authenticate itself), replay attack.

 Solution: use challenge-response protocol. Send the hash of the challenge with the password. This
prevents MITM and replay attack.

 Does it prevent brute-force attack, if the server is the adversary?

 Use expensive hash, using salt OR user also uses random number as nonce (against rainbow table).

 Secure Remote Password Protocol

 Discrete logarithm problem

 Anti-hammering defense, i.e., disconnect and not allow the user to connect for certain amount of time
if the user enters invalid password for 3 times, to prevent brute-force attack .

Example of weak authentication system

 Kerberos 4,5

 How Kerberos works?

 To obtain services from an application server in a “Kerberized" environment:

 A client must First obtain a Kerberos ticket from the authentication server. This ticket contains, among other things, a section of
data encrypted with the secret key belonging to the requested service.

 The client presents this ticket to the application server, which can then verify the ticket for authenticity. Since the client does not
know the server's secret key, it cannot forge a valid ticket, nor can it tamper with the contents of a ticket without being
detected.

 The actual procedure for obtaining, storing, and using tickets is divided into two steps:

 When the user first logs in and enters his password, the client software uses the password to obtain a special ticket known as a
TicketGranting Ticket (TGT) from the central authentication server.

 When a user requires access to a Kerberized service, the client software presents the TGT to the Ticket-Granting Server (TGS),
which then issues a ticket for that particular service. This servicespecic ticket is then used to authenticate the actual requests for
service.

Once a user has a valid TGT, the application software can automatically obtain service-specific tickets without human intervention.

Wu, Thomas D. "A Real-World Analysis of Kerberos Password Security." NDSS. 1999.

Susan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

Susan’s

Desktop

Computer

Think “Kerberos Server” and don’t

let yourself get mired in

terminology.

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

Susan’s

Desktop

Computer

Represents something

requiring Kerberos

authentication (web

server, ftp server, ssh

server, etc…)

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

“I’d like to be allowed to

get tickets from the Ticket

Granting Server, please.

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

“Okay. I locked this box with your

secret password. If you can unlock

it, you can use its contents to access

my Ticket Granting Service.”

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

TGT

Kerberos for Users power point by Jeff Blaine, May 2006.

TGT

Because Susan was able to open the box

(decrypt a message) from the Authentication

Service, she is now the owner of a shiny “Ticket-

Granting Ticket”.

The Ticket-Granting Ticket (TGT) must be

presented to the Ticket Granting Service in

order to acquire “service tickets” for use with

services requiring Kerberos authentication.

The TGT contains no password information.

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

“Let me prove I am Susan

to XYZ Service.

Here’s a copy of my TGT!”

TGTTGT

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

TGT

Hey XYZ:

Susan is Susan.

CONFIRMED: TGS

You’re Susan.

Here, take this.

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

TGT
Hey XYZ:

Susan is Susan.

CONFIRMED: TGS

I’m Susan. I’ll prove it.

Here’s a copy of my

legit service ticket for

XYZ.

Hey XYZ:

Susan is Susan.

CONFIRMED: TGS

Kerberos for Users power point by Jeff Blaine, May 2006.

Susan’s

Desktop

ComputerSusan

Key

Distribution

Center

Ticket

Granting

Service

Authen-

Tication

Service

XYZ Service

TGT
Hey XYZ:

Susan is Susan.

CONFIRMED: TGS

Hey XYZ:

Susan is Susan.

CONFIRMED: TGS

That’s Susan alright. Let me

determine if she is authorized to

use me.

Kerberos for Users power point by Jeff Blaine, May 2006.

Kerberos vulnerability

 Normally, if the user enters an incorrect password, the initial decryption attempt
produces a gibberish packet, which causes the Kerberos client software to notify the
user and discard the packet.

 But

 what if the client software, instead of throwing away the packet after each attempt, allowed the user
to try decrypting the same packet again with different passwords?

 what if, instead of having a human typing in different passwords, the software automated the
procedure, pulling in passwords from a dictionary as fast as it could check them?

 Since the TGT has a fixed, publicly-known format, the software could determine if it
had found the correct password by looking for one that decrypted the TGT properly
(dictionary attack).

Wu, Thomas D. "A Real-World Analysis of Kerberos Password Security." NDSS. 1999.

Password Recovery

 Since the recovery questions can be used to reset passwords, the strength of
authentication scheme is Min(password-entropy, recovery-question-entropy)

 Issue: the answer to most of recovery question is easy to guess, specially if the adversary can get
more information about the victim via social media profiles.

 Ex: what is your favorite color?

 Ex: what is your favorite movie?

Evaluation factors for authentication scheme

 Goal: to evaluate different authentication scheme, specially passwords.

 In Paper: “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes”
 To evaluate all different authentication scheme, a standard benchmark and framework is introduced with 25

properties for analyzing wide spectrum of benefits they offer, when compared to text passwords.

 To rate the pros and cons of each scheme, this framework is used extensively on 35 password replacement
schemes.

 Main focus in the rating process is user authentication on the web, specifically from client devices like PCs to
remote verifiers. That means, human-to-machine authentication, but not machine-to-machine.

 The benefit of each scheme to be considered are placed under three categories:

 Usability: Ease of interacting with the user authentication scheme.

 Deployability: The ease of combine the authentication scheme in systems.

 Security: The attack types that the scheme prevents.

Usability Benefits

1. Memorywise Effortless: Users of the scheme do not have to remember any secrets
at all.

• Quasi-Memorywise effortless: if users have to remember one secret for everything

2. Scalable for users

• Using the same scheme for hundreds of accounts does not increase burden on the user.

• By Scalable, it means from user’s cognitive load perspective , but not system resource perspective

3. Nothing-to-Carry: Users do not need to carry an additional physical object such
as piece of paper, electronic device, mechanical key

• Quasi-Nothing-to-Carry: is awarded if the object is one that they’d carry everywhere all the time
anyway, such as their mobile phone, but not if it’s their computer (including tablets).

4. Physically-Effortless: The authentication process does not require physical (as
opposed to cognitive) user effort beyond, say, pressing a button.

• Quasi-Physically-Effortless: If the user’s effort is limited to speaking.

26

Usability Benefits

5. Easy-to-Learn: Users who don’t know the scheme can figure it out and learn it
without too much trouble, and then easily recall how to use it.

6. Efficient-to-Use: The time the user must spend for each authentication is
acceptably short. The time required for setting up a new association with a
verifier, although possibly longer than that for authentication, is also reasonable.

7. Infrequent-Errors: The task that users must perform to log in usually succeeds when
performed by a legitimate and honest user. In other words, the scheme isn’t so
hard to use or unreliable that genuine users are routinely rejected.

8. Easy-Recovery-from-Loss: A user can conveniently regain the ability to
authenticate if the token is lost or the credentials forgotten. This combines usability
aspects such as: low latency before restored ability; low user inconvenience in
recovery (e.g., no requirement for physically standing in line); and assurance that
recovery will be possible, for example via built-in backups or secondary recovery
schemes. If recovery requires some form of reenrollment, this benefit rates its
convenience.

27

Deployability Benefits
1. Accessible: Users who can use passwords are not prevented from using the scheme by disabilities or other

physical (not cognitive) conditions.

2. Negligible-Cost-per-User: The total cost per user of the scheme, adding up the costs at both the prover’s
end (any devices required) and the verifier’s end (any share of the equipment and software required), is
negligible. The scheme is plausible for startups with no per-user revenue.

3. Server-Compatible: At the verifier’s end, the scheme is compatible with text-based passwords. Providers
don’t have to change their existing authentication setup to support the scheme.

4. Browser-Compatible: Users don’t have to change their client to support the scheme and can expect the
scheme to work when using other machines with an up-to-date, standards-compliant web browser and no
additional software. Schemes fail to provide this benefit if they require the installation of plugins or any
kind of software whose installation requires administrative rights.

• Quasi-Browser-Compatible: If they rely on non-standard but very common plugins, e.g., Flash.

5. Mature: The scheme has been implemented and deployed on a large scale for actual authentication
purposes beyond research. Indicators to consider for granting the full benefit may also include whether the
scheme has undergone user testing, whether the standards community has published related documents,
whether open-source projects implementing the scheme exist, whether anyone other than the implementers
has adopted the scheme, the amount of literature on the scheme and so forth.

6. Non-Proprietary: Anyone can implement or use the scheme for any purpose without having to pay royalties
to anyone else. The relevant techniques are generally known, published openly and not protected by
patents or trade secrets.

28

Security Benefits
1. Resilient-to-Physical-Observation: An attacker cannot impersonate a user after observing them

authenticate one or more times.
• Quasi-Resilient-to-Physical-Observation: if the scheme could be broken only by repeating the observation more than,

say, 10–20 times. Attacks include shoulder surfing, filming the keyboard, recording keystroke sounds, or thermal
imaging of keypad.

2. Resilient-to-Targeted-Impersonation: It is not possible for an acquaintance (or skilled
investigator) to impersonate a specific user by exploiting knowledge of personal details (birth
date, names of relatives etc.). Personal knowledge questions are the canonical scheme that fails
on this point.

3. Resilient-to-Throttled-Guessing: An attacker whose rate of guessing is constrained by the
verifier cannot successfully guess the secrets of a significant fraction of users. The verifier-
imposed constraint might be enforced by an online server, a tamper-resistant chip or any other
mechanism capable of throttling repeated requests.

4. Resilient-to-Unthrottled-Guessing: An attacker whose rate of guessing is constrained only by
available computing resources cannot successfully guess the secrets of a significant fraction of
users. We might for example grant this benefit if an attacker capable of attempting up to 240

or even 264 guesses per account could still only reach fewer than 1% of accounts. Lack of this
benefit is meant to penalize schemes where the space of credentials is not large enough to
withstand brute force search (including dictionary attacks, rainbow tables and related brute
force methods smarter than raw exhaustive search, if credentials are user-chosen secrets).

29

Security Benefits
5. Resilient-to-Internal-Observation: An attacker cannot impersonate a user by intercepting the user’s input from inside the

user’s device (e.g., by keylogging malware) or eavesdropping on the cleartext communication between prover and
verifier.

• Quasi-Resilient-to-Internal-Observation: If the scheme could be broken only by intercepting input or eavesdropping cleartext more than
certain amount. This penalizes schemes that are not replay-resistant, whether because they send a static response or because their
dynamic response countermeasure can be cracked with a few observations.

6. Resilient-to-Phishing: An attacker who simulates a valid verifier, cannot collect credentials that can later be used to
impersonate the user to the actual verifier. This penalizes schemes allowing phishers to get victims to authenticate to
lookalike sites and later use the harvested credentials against the genuine sites.

7. Resilient-to-Theft: If the scheme uses a physical object for authentication, the object cannot be used for authentication by
another person who gains possession of it.

• Quasi-Resilient-to-Theft: if the protection is achieved with the modest strength of a PIN, even if attempts are not rate controlled, because
the attack doesn’t easily scale to many victims.

8. No-Trusted-Third-Party: The scheme does not rely on a trusted third party (other than the prover and the verifier) who
could, upon being attacked or otherwise becoming untrustworthy, compromise the prover’s security or privacy.

• This property makes an important point: a lot of authentication problems would become easier if we could just trust one party to store
passwords, run the password servers, etc. However, single points of failure are bad, since attackers can focus all of their energy on that
point.

9. Requiring-Explicit-Consent: The authentication process cannot be started without the explicit consent of the user. This is
both a security and a privacy feature (a rogue wireless RFID-based credit card reader embedded in a sofa might
charge a card without user knowledge or consent).

10. Unlinkable: Colluding verifiers cannot determine, from the authenticator alone, whether the same user is authenticating to
both. This is a privacy feature.

30

Authentication Schemes

 Several authentication schemes are invented as replacement to passwords. The
following are considered in the paper:

 Password management software

 Federal login protocols

 Graphical Password schemes

 Cognitive authentication schemes

 Hardware tokens

 One-time passwords

 Phone aided schemes

 Thus schemes use the methods explained in order to strength the password against
different adversary capabilities

31

Evaluation of scheme with ratings
 Evaluation of

Legacy
Passwords

Highly scores
in
Deployability
.

32

Survey details Advantages Disadvantages

-3 decades ago, the researchers were

able to guess over 75% of users’

passwords.

-Corporate password users tend to

copy the passwords on post-it notes.

- most users have many accounts for

which they have forgotten their

passwords.

-On average 25 accounts and 6 unique

passwords per user.

-Nothing-to-Carry

-Easy-to-Learn: The key reason why

password schemes are so popular.

-Efficient-to-Use (as most users type only a

few characters)

- Quasi-Infrequent-Errors(because of

typos): is an important reason why users

pick easy-to-guess passwords.

- Easy-Recovery-from-Loss: They are easy

to reset.

-Accessible

- Negligible-Cost-per-User

- Resilient-to-Theft

-No-Trusted-Third-Party

- Not Memorywise-Effortless

-Not Scalable-for-users (must be remembered and

chosen for each site)

-Not Resilient-to-Physical-Observation: passwords fail

this test, since, e.g., they can be captured by filming

the keyboard or recording keystroke sounds.

-Quasi-Resilient-to-Targeted-Impersonation: The

authors say that passwords have is property because

they could not find any studies saying that your

friends or acquaintances can easily guess your

password.

-Resilient-to-Throttled-Guessing: passwords fail

because they have low entropy and skewed

distribution.

-Resilient-to-Unthrottled-Guessing: passwords fail

because they have low entropy and skewed

distribution.

-Resilient-to-Internal-Observation: Passwords fail

because they are static tokens, once you have one,

you can use it until it expires or is revoked.

-Resilient-to-Phishing: phishing attack are very

common.

Evaluation of scheme with ratings
 Evaluation of Encrypted Password Managers : Mozialla Firefox

Highly scores in Deployability.

33

Survey details Advantages Disadvantages

-Automatically offers to remember

passwords, optionally encrypted with master

password.

- It pre-fills username and password when

the user revisits the same web site.

-With its SYNC facility, the passwords can be

stored, encrypted in the cloud.

- No typing required, except the master

password once per session.

-Quasi-Memorywise-Effortless

-Scalable-for-Users

-Quasi-Nothing-to-Carry(at least to carry a

smart phone)

- Quasi-Physically-Effortless

- Easy-to-Learn

-Efficient-to-Use

-Infrequent-Errors(hardly any)

-Quasi-Resilient-to-Targeted-Impersonation.

-Resilient-to-Theft

- Unlinkable

-Not Easy-Recovery-from-Loss (catastrophic

to lose the master password)

- Not Resilient-to-Throttled-Guessing

- Not Resilient-to-Unthrottled-Guessing

Evaluation of scheme with ratings
 Evaluation of Proxy Based : URRSA

34

Survey details Advantages Disadvantages

-places a man in the middle between the

user’s machine and the server(to enable

secure logins despite malware)

- The User password is encrypted at the

proxy with 30 different keys.

-The codes are generated at the proxy by

using 30 keys and password.

- User carries codes and uses at login time.

-The proxy never authenticates the user, but

merely decrypts with agreed-upon key.

-Memorywise-Effortless

-Quasi-Infrequent-Errors

- Quasi-Server-Compatible

- Browser-Compatible

- Quasi-Resilient-to-Targeted-Impersonation.

- Quasi-Resilient-to-Internal-Observation

- Negligible-Cost-per-User

-Not Scalable-for-Users

-Not Nothing-to-Carry

- Not Physically-Effortless

-Not Efficient-to-Use

- Not Easy-Recovery-from-Loss(since no

passwords are stored at the proxy)

- Not Mature

- Not Proprietary

Evaluation of scheme with ratings
 Evaluation of Federated Singel Sign-On : OpenID

Favorable from deployment point of view.

35

Survey details Advantages Disadvantages

-Enables web sites to authenticate a user by

redirecting to a trusted identity server.

-Eliminates problem of remembering

different passwords for different sites.

- Still uses text passwords to authenticate

users.

-Quasi-Memorywise-Effortless(need to

remmber one master password)

-Scalable-for-Users (can work for multiple

sites)

- Nothing-to-Carry

- Efficient-to-Use

- Infrequent-Errors

- Easy-Recovery-from-Loss(same as

password reset)

- not Server-Compatible

- Not Resilient-to-Internal-Observation

(malware can steal identity from cached

cookie)

- Not Resilient-to-Phishing

-Not Unlinkable

Evaluation of scheme with ratings
 Evaluation of Graphical Passwords : Persuasive Cued Clickpoints (PCCP)

36

Survey details Advantages Disadvantages

-Leverage natural human ability to remember

images, which is believed to exceed memory

for text.

- User is given five images to select one point

on each, determining the next image

displayed.

-Easy-to-Learn(usage and mental models

match web passwords)

- Quasi-Efficient-to-Use(login times on the

order of 5s to 20s exceed text passwords)

- Quasi-Infrequent-Errors

- Browser-Compatible.

- Not Memorywise-Effortless

-Not Scalable-for-Users

- Not Accessible (for blind users)

- Not Server-Compatible

-Not Mature

- Not Resilient-to-Physical-Observation.

Evaluation of scheme with ratings

 Evaluation of Cognitive Authentication: GrIDsure

Survey details Advantages Disadvantages

-Challenge-Response schemes that attempt to

address the reply attack on passwords by

having the user deliver proof that he knows

the secret.

-If memorization and computation were no

barrier then the server might challenge the

user to return a cryptographic hash of the

user’s secret combined with a server-selected

nonce.

- However, it is unclear if a scheme within the

means of human memory and calculating

ability is achievable.

- Quasi-Efficient-to-Use(unlike passwords)

- Negligible-Cost-per-User (in terms of

technology)

- Browser-Compatible

- Resilient-to-Targeted-Impersonation

- Not Accessible.

- Not Server-Compatible.

- Not Resilient-to-Physical-Observation.

33

Evaluation of scheme with ratings
 Evaluation of Paper Tokens : OTPW

38

Survey details Advantages Disadvantages

-Using paper to store long secrets in the

cheapest form of a physical login token.

- The concept is related to military codebooks

used throught history.

- User carries the hash pre-images, printed as

8-character values.

- Easy-Recovery-from-Loss

-Negligible-Cost-per-User

-Browser-Compatible

- Not Memorywise-Effortless.

- Not Scalable-for-Users

-Not Nothing-to-Carry(because of paper

tokens)

-Not Physically-Effortless

- Not Resilient-to-Physical-Observation.

Evaluation of scheme with ratings
 Evaluation of Hardware tokens : RSA Secure ID

39

Survey details Advantages Disadvantages

- store secrets in a dedicated tamper-

resistant module.

- Each instance of the devide holds a secret

“seed” known to the back-end.

- Generates a new 6 digit code from this

secret every 60 seconds.

- User enters PIN along with this generated

code.

- concatenation of this 4 digit PIN and the

dynamic 6 digit code is called PASSCODE.

-Easy-to-Learn

- Quasi-Efficient-to-Use

-Quasi-Infrequent-Errors.(like passwords)

- Not Memorywise-Effortless

- Not Scalable-for-Users (needs new Token

and PIN per user)

- Not Physically-Effortless

- Not Easy-Recovery-from-Loss

- Not Accessible (for blind users)

Evaluation of scheme with ratings
 Evaluation of Hardware tokens : CAP reader

40

Survey details Advantages Disadvantages

- CAP reader was designed by Mastercard

to protect online banking transactions.

-The user must put the credit card into the

CAP reader and enter the PIN. Next, the

reader talks to the card’s embedded

processor, outputs an 8-digit code which the

user supplies to the web site.

-In practice, deployability and usability are

often more important than the security, this is

why CAP reader haven’t taken over the

world.

-Migration costs such as coding, debugging

effort, and user training, make developers

nervous.

-The less usable a scheme is, the more that

users will complain (and try to pick easier

authentication tokens that are more

vulnerable to attacks.

-

-Easy-to-Learn

-Quasi-Efficient-to-Use

-Quasi-Infrequent-Errors.(like passwords)

- Not Memorywise-Effortless

- Not Scalable-for-Users (needs new Token

and PIN per user)

- Not Physically-Effortless

- Not Easy-Recovery-from-Loss

- Not Accessible (for blind users)

Evaluation of scheme with ratings
 Evaluation of Mobile Phone-based : Phoolproof

41

Survey details Advantages Disadvantages

- Token is a mobile phone with special code

and crypto keys.

- It uses public key cryptography and SSL like

authentication protocol.

- Quasi-Infrequent-Errors.(like passwords)

- Quasi-Negligible-Cost-per-User

-Resilient-to-Physical-Observation

-Resilient-to-Impersonation

--Resilient-to-Throttled-Guessing

- Resilient-to-Unthrottled-Guessing

- Not Memorywise-Effortless.

- Not Scalable-for-Users

-Not Easy-Recovery-from-Loss

Evaluation of scheme with ratings
 Evaluation of Biometrics : Fingerprint recognition

 How Big the keyspace is?

 Fingerprint: ~13.3 bits

 Iris scan: ~19.9bits

 Voice recognition: ~11.7bits

 Bits of entropy are roughly the same as passwords.

42

Survey details Advantages Disadvantages

- leverage uniqueness of physical or

behavioral characteristics across individuals.

-Memorywise-Effortless

- Scalable-for-Users

- Easy-to-Learn

- not -Negligible-Cost-per-User

-Not browse-compatible

Comparisons
of
Various
Schemes

38

Comparisons
of
Various
Schemes

39

Brief comparison of different authentication
methods

Password Biometric CAP reader

usability

East-to learn Yes Yes Yes

Infrequent Errors Quasi-yes No Quasi-yes

Scalable-for-Users effort No Yes No

Easy recovery form loss of the authentication token Yes No No

Nothing to carry Yes Yes no

deploy ability

Server-Compatible Yes No No

Brower-Compatible Yes No Yes

Accessible yes Quasi-yes no

40

Brief comparison of different authentication
methods

Password Biometric CAP reader

Security

Resilient-to Physical-Observation No Yes Yes

Resilient-to-Targeted-Impersonation quasi-yes No Yes

Resilient-to-Throttled-Guessing no Yes Yes

Resilient-to-Unthrottled-Guessing No No yes

Resilient-to-Internal-Observation No No Yes

Resilient-to-Phishing No No Yes

No-Trusted-Third-Party yes Yes Yes

Resilient-to-Leaks-from-Other-Verifiers no no yes

41

 It seems that some set of goals are difficult to achieve at the same time, such as:

 Memorywise-Effortless and Nothing-to-Carry

 Memorywise-Effortless and Resilient-to-Theft

Which is either the user remembers something, or it can be stolen (except for biometrics).

 Server-Compatible and Resilient-to-Internal-Observation

 Server-Compatible and Resilient-to-Leaks-from-Other-Verifiers.

Server compatible means sending a password, where passwords can be stolen on user machine,
replayed by one server to another.

47

Multi-factor Authentication (MFA)

 Requires users to authenticate themselves using two or more authentication
mechanisms.

 The mechanisms should involve different modalities.

 Something you know

 Something you possess

 Something you are

 E.g. smart card and PIN, Username/password and token number.

 The idea is that the attacker must steal/subvert multiple authentication mechanisms
to impersonate a user, i.e. the attacker might guess a password, but lack access to a
user’s phone.

Multi-factor Authentication (MFA)

 Example: Google’s two-factor authentication requires a password plus a cellphone
which can receive authorization codes via text message.

 Example: Amazon Web Service (AWS) two-factor authentication requires a
password and an MFA device.

 MFA device can be asmartphone running an authentication app, or a special-purpose security token
or security card.

 In general, MFA is good idea, however, empirical studies show that if users are given
a second authentication factor in addition to passwords, users pick much weaker
passwords.

Honeywords: A cracking password detection

50

The slides and images of this section is from Honeywords: A New Tool for Protection from Password Database Breach by Kevin Bowers, Ronald L. Rivest, RSA conference 2014, power point

And the paper.

Motivation-Good and bad news about
password breaches

 The good news: when talking about password breaches, a convenient recent example is always
available!

 The bad news: This is all bad news.

450,000 passwords
July 2012

Honeywords

 “Honeywords’’ proposed 2013 by Juels & Rivest

 What is Honeywords? A method to make password-cracking detectable

 Goal: detect password cracking, and improving the security of hashed password.

 How? Store additional false passwords (called honeywords) per each user.

52

Honeywords: Making Password
Cracking Detectable

Honeywords

 Consider a system with n users u1,u2, …, un, each have a password p1,p2,…,pn

respectively.

 System stores the user id ui with the hash of the password, pair (ui,H(pi)). Using salt is
essential but will not effect the method, thus for simplicity we ignore it.

 Per each user, the system will add extra data (fake passwords) to the hash.

 If the adversary is able to have access to the password file, and is even able to
extract all the password, he may not be able to exactly guess witch password is the
real user password and which one is the fake.

 If adversary tries one of them, a wrong password will detect the adversary!

44

Attack scenarios

 Stolen files of password hashes: The adversary can steal the password file and
apply offline brute-force attack or other methods and extract the passwords.

 Easily guessable passwords: The adversary tries to login by guessing password.
Most of users choose weak passwords that enables a successful attack.

 Visible passwords: The adversary may get the password by observing the user
entering the password.

 Same password for many systems or services: Mostly users use the same password
for different services. So, if the password is broken on one system, the attacker is
able to break other systems as well.

 Passwords stolen from users: Compromising end-devices such as laptops and phones
using malwares help the adversary to steal user password.

 Password change compromised: The mechanism in which the user is able to
change/recover its password is compromised, thus the attacker will gain access to
user password.

45

Honeychecker

 The paper focus on the first scenario, in which the attacker has access to hashed
password file.

 There is the Honeychecker server which is a separate hardened computer system
where secret information can be stored.
 Create a distributed security, since the computer which stores the password file is different from the

Honeychecker.

 Compromising of Honeychecker, in worst case will only reduce the security to the level before using
Honeywords method.

 Assumption: computer system can communicate with the honeychecker when a login
attempt is made on the computer system, or when a user changes her password. In
addition, the communication is over dedicated lines and/or encrypted and
authenticated.

 Depending on the policy chosen, honeychecker may
 signal to the computer system that login should be denied

 merely signal a “silent alarm” to an administrator, and let the login on the computer system proceed

46

Honeychecker

 Has a single database value c(i) for each user ui. The values are integers in the
range 1 to k, for some small integer parameter k (e.g. k = 20).

 Two type commands:

 Set(i, j): Sets c(i) to have value j.

 Check(i, j): Checks that c(i) = j. Return result of check to requesting computer system or raise an alarm
if check fails (base on configuration).

47

Approach – Setup

 For each user ui, a list Wi of distinct words, called “sweetwords”

𝑊𝑖= (𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑘)

 Only one of these sweetwords wi,j is equal to the password pi known to user ui.

 c(i) denote the index of user ui’s password in the list Wi, so that

𝑤𝑖,𝑐(𝑖) = 𝑝𝑖
 sugarword : The correct password 𝑤𝑖,𝑐(𝑖) .

 Honeywords: Other (k − 1) words 𝑤𝑖,𝑗.

 Toughnut: a very strong password whose hash the adversary is unable to invert.

 Some honeywords may be “toughnut”.

48

Approach – Setup

 Current password file F will have new format. Instead of containing pairs

𝑢𝑖 , 𝐻 𝑝𝑖 , in contains pairs 𝑢𝑖 , 𝐻𝑖 , where

𝑣𝑖,𝑗 = 𝐻 𝑤𝑖,𝑗
𝐻𝑖 = (𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑘)

 Note: The user only needs (as usual) to remember her password pi.

 Gen 𝑘, 𝑝𝑖 : the procedure used to generate both a list Wi of length k of
sweetwords for user ui and an index c(i) of the correct password pi within
Wi:

Gen 𝑘, 𝑝𝑖 = (𝑊𝑖 , 𝑐 𝑖)

49

Approach – Login

 Login system should determine whether a proffered password g is equal to the
user’s password or not.

 If g is not the user’s password, the login routine needs to determine whether g is a honeyword or not.

 If the user/adversary submitted the correct password for the user, then login proceeds successfully as usual.

 If the adversary has entered one of the user’s honeywords, obtained for example by brute-forcing the password file F, then an
appropriate action takes place (determined by policy), such as

 setting off an alarm or notifying a system administrator,

 letting the login proceed, but on a honeypot system,

 tracing the source of the login carefully, etc.

50

Approach – Login

 How does the login routine determine whether g = pi?

 If the hash H(g) of g is not in the file F for the user ui, then word g is neither the user’s password nor
one of the user’s honeywords, so login is denied.

 If hash H(g) of g matches one of the sweetword in Wi list for user ui, the login routine should detect
whether g is the user’s password, or one of the user’s honeywords.

 Base on the matching H g = 𝑣𝑖,𝑗 , the login routine will know the index of

sweetword that matches g. But it doesn’t know whether

𝑗 = 𝑐(𝑖)

 The computer system sends the honeychecker the following message

𝑐ℎ𝑒𝑐𝑘(𝑖, 𝑗)

 The honeychecker determines whether 𝑗 = 𝑐(𝑖), if not, an alarm is raised and other
actions may be taken.

51

Approach – Change of password

 When user ui changes password, or her account is first initialized, the system needs
to:

 use procedure Gen 𝑘, 𝑝𝑖 to obtain a new list Wi of k sweetwords, the list Hi of their hashes, and the
value c(i) of the index of the correct password pi in Wi.

 securely notify the honeychecker of the new value of c(i), and

 update the user’s entry in the file F to (ui,Hi).

 Note: The honeychecker does not learn the new password or any of the new
honeywords.

 Finally, the computer system sends the honeychecker following message:

𝑆𝑒𝑡(𝑖, 𝑗)

52

Security Definitions

 Consider z be the adversary’s expected probability of winning the game. This
probability is taken over the user’s choice of password pi, the generation procedure
Gen(k; pi), and any randomization used by the adversary to produce its guess j.
Thus z ≥ 1/k, since an adversary can win with probability 1/k just by guessing j at
random.

 Flatness: Honeyword generation method is 𝜖 − 𝑓𝑙𝑎𝑡 for a parameter 𝜖 if the
maximum value over all adversaries of the adversary’s winning probability z is 𝜖.
 perfectly flat: If the generation procedure is as flat as possible (i.e., 1/k flat).

 approximately flat: If it is 𝜖 − 𝑓𝑙𝑎𝑡 for 𝜖 not much greater than 1/k.

 For k=20; if Gen is perfectly flat, the adversary who has compromised F and
inverted H has a chance of at most 5% of picking the correct password pi from this
list. In this ideal case, 𝜖 = 1/20.

62

Honeyword Generation

 Different flat (or approximately flat) generation procedures Gen

 With legacy-UI (User Interface) procedures, the password-change UI is unchanged.

 Chaffing-by-tweaking

 chaffing-by-tail-tweaking

 chaffing-by-tweaking-digits

 chaffing-with-a-password-model

 With modified-UI procedures, the password-change UI is modified to allow for better
password/honeyword generation.

 take-a-tail

63

Legacy-UI password changes

 In this method, the password-change procedure asks the user for the new password.

 The UI does not tell the user about the use of honeywords, nor interact with her to
influence her password choice.

 Note: It is possible to change the honeyword generation procedure without
needing to notify the user or to change the UI.

 In this method the (k-1) honeywords are generates similar in style to the
password pi given by the user ui, so that an adversary will have difficulty in
identifying pi in the list Wi of all sweetwords for user ui.

 Chaffing: The honeyword generation procedure Gen(k, pi) or “cha ff
procedure” generates a set of (k-1) distinct honeywords (“chaff”).
 Note that the honeywords may depend upon the password pi.

 The password and the honeywords are placed into a list Wi, in random order. The value c(i)
is set equal to the index of pi in this list.

64

Legacy-UI password changes

 The success of chaffing depends on the quality of the chaff generator.

 Two basic methods for chaffing:

 Chaffing by tweaking

 Chaffing-with-a-password-model

65

Chaffing by tweaking

 In this method some character positions of the password are selected in order to
obtain the honeywords.

 Let t denote the desired number of positions to tweak.

 The honeywords are then obtained by tweaking the characters in the selected t
positions: each character in a selected position is replaced by a randomly-chosen
character of the same type: digits are replaced by digits, letters by letters, and
special characters (anything other than a letter of a digit) by special characters.

 chaffing-by-tail-tweaking: the last t positions of the password are chosen to be
changed in order to obtain the honeywords.

 chaffing-by-tweaking-digits: only the last t digits will be changed for honeywords
production.

66

Chaffing by tweaking

 Example 1

 User password: BG+7y45 (called sugar)

 T=3, k=4

 Method: chaffing-by-tail-tweaking

 Possible honeywords: BG+7q03, BG+7m55, BG+7y45, BG+7o92 (called honey).

 Example 2

 User password: 40*flavors

 T=2, k=2

 Method: chaffing-by-tweaking-digits

 Possible honeywords: 42*flavors, 57*flavors, 18*flavors.

67

Chaffing-with-a-password-model

 uses a probabilistic model of real passwords; this model might be based on a given
list L of thousands or millions of passwords and perhaps some other parameters. This
method does not necessarily need the password in order to generate the
honeywords, and it can generate honeywords of widely varying strength.

 Example of list of 19 honeywords generated by one simple mode:

68

kebrton1 02123dia

a71ger forlinux

#NDYRODD_!! sbgo864959

venlorhan aj1aob12

pizzhemix01 sveniresly

9,50PEe]KV.0?RIOtc&L-:IJ"b+Wol<*[!NWT/pb

mobopy WORFmgthness

Chaffing-with-a-password-model

 Modeling syntax: Bojinov et al. propose the following approach to chaffing-with-a-
password model. In their scheme,

 password is parsed into a sequence of “tokens”

 each token represents a distinct syntactic element (either a word, number, or set of special
characters).

 Honeywords are then generated by replacing tokens with randomly selected values that match the
tokens.

 Example

 User password: mice3blind

 token sequenceW4 |D1 |W5 (where D represent digit, W word and the index numbers shows the
length)

 Generation approach creates: W4 ← gold, D1 ← 5 , W5 ← rings, thus the honeyword is gold5rings

69

Modified-UI password changes
 take-a-tail: This method is identical to the chaffing-by-tail-tweaking method, except that the

tail of the new password is now randomly chosen by the system, and required in the user-
entered new password.

 That is, the password-change UI is changed from:
Enter a new password:

 to something like:

Propose a password: • • • • • • •

Append ‘413’ to make your new password.

Enter your new password: • • • • • • • • • •

 Thus, if the user proposes “RedEye2,” his new password is “RedEye2413.”

Which means the user is forced by the system to add extra data to its password and memorize it as part of her
password.

 Once the password has been determined, the system can generate honeywords in same manner
as chaffing-by-tail-tweaking.

70

Comparison of methods

71

Variations and Extensions

 “Random pick” honeyword generation

 Typo-safety

 Storage optimization

 Hybrid generation methods

72

“Random pick” honeyword generation

 It is a modified-UI procedure that is perfectly flat, where first all the k element of the Wi list
is generated in some arbitrary manner (which may involve interaction with the user) and then
one of them is picked uniformly at random as the new password; the other elements become
honeywords. As an example of user involvement, the system might ask the user for k
potential passwords. The value c(i) is set equal to the index of (randomly chosen) password pi

in this list.

 This is completely flat no matter how the list is generated.

 It is probably a bad idea to ask the user for k sweetwords, since the user may remember and
mistakenly enter a sweetword supplied by her and used by the system as a honeyword.

73

Typo-safety

74

 In order to prevent the rare accidents, such as legitimate user set off an alarm by
accidentally entering a honeyword, some typo-safety may be considered.

 In tail-tweaking it would be helpful if the password tail were quite different from
the honeyword tails, so a typing error won’t turn the password into a honeyword.

 Use an error-detection code to detect typos. Let q denote a small prime, then any
two sweetword tails must be multiple of q.

Storage optimization

 We can optimize some honeyword generation methods, such as tweaking and take-
a-tail, to reduce their storage to little more than a single password hash.

 Consider tailt-weaking where the tails are t-digit numbers and let T (p) denote the
class of sweetwords obtainable by tweaking p for the selected character positions.
 1) k=|T(pi)|

 2) let 𝑊𝑖=𝑇(𝑝𝑖)=(𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,𝑘), sorted into increasing order lexicographically.

 3) select a random element 𝑟 ∈ {0,1, … , 𝑘 − 1} uniformly at random.

 4) compute and store 𝐻(𝑤𝑖,𝑟).

 To verify a proffered password g,
 1) The computer system computes the hash of each sweetword in T (g)

 2) If one is found equal to 𝐻(𝑤𝑖,𝑟) then 𝑤𝑖,𝑟 is known, which means the set𝑊𝑖 is correct

 3) Find the position j of g in 𝑊𝑖 .

 4) The honeychecker operates as usual: The computer system sends j to the honeychecker to check
whether j = c(i).

75

Hybrid generation methods

 It is possible to combine the benefits of different honeyword generation strategies
by composing them into a “hybrid” scheme.

 Use chaffing-with-a-password-model on user-supplied password p to generate a set of a (≥2) seed
sweetwords W’, one of which is the password. Some seeds may be “tough nuts.”

 Apply chaffing-by-tweaking-digits to each seed sweetword in W’ to generate b (≥ 2) tweaks
(including the seed sweetword itself). This yields a full set W of k = a × b sweetwords.

 Randomly permute W. Let c(i) be the index of p such that p = wc(i), as usual.

76

Policy Choices

 Password Eligibility: Some words may be ineligible as passwords because they
violate one or more policies regarding eligibility, such as:

 Password syntax: A password may be required to have a minimum length, a minimum number of
letters, a minimum number of digits, and a minimum number of special characters. The initial
character may be restricted.

 Dictionary words: A password may not be a word in the dictionary, or a simple variant thereof.

 Password re-use: A password may be required to be different than any of the last r passwords of the
same user, for some policy parameter r (e.g. r=10).

 Most common passwords: A password may not be chosen if it appears on a list of the 500 most
common passwords in widespread use (to prevent online guessing attacks).

 Popular passwords: A password may not be chosen if m or more other users in a large population of
users are currently using this password.

77

Policy Choices

 Failover: The computer system can be designed to have a “failover” mode so that
logins can proceed more-or-less as usual even if the honeychecker has failed or
become unreachable.

 In failover mode, honeywords are temporarily promoted to become acceptable passwords; this
prevents denial-of-service attacks resulting from attack on the honeychecker or the communications
between the system and the honeychecker.

 The cost in terms of increased password guessability is small. Temporary communication failures can
be addressed by buffering messages on the computer system for later delivery to and processing by
the honeychecker.

78

Policy Choices

 Per-user policies: policies may vary per-user (this is not uncommon already).

 Honeypot accounts: Such accounts can help identify theft of F and distinguish over a DoS attack.
Which accounts are honeypot accounts would be known only to the honeychecker.

 Selective alarms: Raise an alarm if there are honeyword hits against administrator accounts or other
particularly sensitive accounts, even at the risk of extra sensitivity to DoS attacks. Policies needn’t be
uniform across a user population.

 Per-sweetword policies: In this policy, the Set(i, j) command to the honeychecker has
an optional third argument ai,j, which says what action to take if a Check(i, j)
command is later issued.

 The actions might be of the form “ Raise silent alarm”, “Allow login” or “Allow for single login only” ,
etc.

79

Attacks

 The paper studies various attacks possible against the methods proposed:

 General password guessing:

 Legacy-UI methods don’t affect how users choose passwords, so they have no beneficial effect against adversaries who try
common passwords in an online guessing attack.

 Modified-UI methods like take-a-tail also affect the choice of password—appending a three-digit random tail to a user chosen
password effectively reduces the probability of the password by a factor of 1000.

 Targeted password guessing: Personal information about a user could help an adversary distinguish
the user’s password from her honeywords. It is often feasible to deanonymize users, that is, ascertain
their real-world identities, based on their social network graphs or just their usernames. Given a user’s
identity, there are then many ways to find demographic or biographical data about her online—by
exploiting information published on social networks, for example. Knowing a user’s basic
demographic information, specifically his/her gender, age, or nationality, is known to enable slightly
more effective cracking of the user’s hashed password. Similarly, attackers often successfully exploit
biographical knowledge to guess answers to personal questions in password recovery systems and
compromise victims’ accounts

 As chaffing-with-apassword-model creates honeywords independently of user’s password, this method of honeyword generation
may enable adversaries to target data-mining attacks against users and gain some advantage in distinguishing their passwords
from their honeywords.

80

Attacks

 Attacking the Honeychecker: The adversary may decide to attack the honeychecker
or its communications with the computer system.

 The updates (“Set” commands) sent to the honeychecker need to be authenticated, so that the
honeychecker doesn’t incorrectly update its database.

 The requests (“Check” commands) sent to the honeychecker also need to be authenticated, so that the
adversary cannot query the honeychecker so as to cause an alarm to be raised.

 The replies from the honeychecker should be authenticated, so that the computer system doesn’t
improperly allow the adversary to login.

 By disabling communications between the computer system and the honeychecker, the adversary can
cause a failover. The computer system then either has to disallow login or take the risk of temporarily
allowing login based on a honeyword and buffering messages for later processing by the
honeychecker.

 The deployment of the computer system and the honeychecker as two distinct systems itself brings the
usual benefits of separation of duties in enhancing security. The two systems may be placed in
different administrative domains, run different operating systems, and so forth.

81

Attacks
 Likelihood Attack: If the adversary has stolen F and wishes to maximize his chance of picking

pi from Wi, he can proceed with a “likelihood attack” as follows.
 Assume here that we are dealing with an approach based on generating honeywords using a probabilistic

model.

 Let G(x) denote the probability that the honeyword generator generates the honeyword x.

 Let U(x) denote the probability that the user picks x to be her password.

 Let Wi = {wi,1, . . . , wi,k}.

 The likelihood that c(i) = j, given Wi, is equal to

𝑈(𝑤𝑖,𝑗)

𝑗′≠𝑗

𝐺 𝑤𝑖,𝑗′ = 𝐶𝑅(𝑤𝑖,𝑗)

 Where

𝐶 =

𝑗′

𝐺 𝑤𝑖,𝑗′

 And where

𝑅 𝑥 = 𝑈(𝑥)/𝐺 𝑥

the relative likelihood that the user picks x compared to the honeyword generator picking x.

82

Attacks

 Denial-of-service:

 Is a potential problem for methods such as chaffing-by-tweaking that generate honeywords by
predictably modifying user supplied passwords.

 The concern is that an adversary who has not compromised the password file F, but who nonetheless
knows a user’s password, can feasibly submit one of the user’s honeywords.

 An overly sensitive system can turn such honeyword hits into a DoS vulnerability. One (drastic)
example is a policy that forces a global password reset in response to a single honeyword hit.

 Conversely, in a system inadequately sensitive to DoS attacks, an adversary that has stolen F can
guess passwords while simulating a DoS attack to avoid triggering a strong response. A policy of
appropriately calibrated response is important and can reduce DoS attacks’ potency.

 Multiple systems: As users commonly employ the same password across different
systems, an adversary might seek an advantage in password guessing by attacking
two distinct systems, system A and system B—or multiple systems, for that matter.

83

Conclusion

 User authentication factors.

 Passwords are the most popular.

 Verity of attacks on passwords

 Passwords are preferred to be used since they have strong deployability and
usability.

 Honeywords, a detection password-cracking method

84

Thank you

85

How to calculate password entropy?

 Consider password as strings of English words, where words are randomly selected
from a collection of 2048 words.

 The entropy for each word is log 211 = 11.

 Password entropy= 11 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑

 NIST entropy: Entropy for random password with length l that is selected from a keyboard set of 94

printable characters is about = 𝑙𝑜𝑔2 94
𝑙 = 6.55 × 𝑙.

back

Hash function optimization

 The computation of hash algorithm can be optimized (less work to be done) by the
adversary in order to guess the password faster.

 Why? Hash algorithms are not designed for password protection. However they are
used to protect passwords.

 General techniques:

 Zero-based optimizations

 Early-exit optimizations

 Initial-step optimizations

back

Key-derivation function

 In cryptography, a key derivation function (KDF) derives one or more secret keys
from a secret value such as a master key, a password, or a passphrase using a
pseudo-random function.

 A Password-Based Key Derivation Function (PBKDF2) is a key derivation function that is part of the
RSA Public Key Cryptographic Standards series.

 A PBKDF2 takes a password, a salt to add additional entropy to the password, and a number of iterations value. The number of
iterations value repeats the hash operation over the password multiple times to produce a derived key for the password that can
be stored in a database.

 By repeating a hash or encryption process over the password multiple times, you are algorithmically slowing down the hashing
process which makes brute force attacks against the password much harder. This means that fewer passwords can be tested at
once.

back

Source : https://www.microsoft.com

Rainbow table

 random set of initial passwords from P (finite set of passwords)

 Applies alternating the hash function with the reduction
function(create chain).

 Example: hash 920ECF10, first applying R

 the password is "sgfnyd"

 false alarm

 Extend the chain to find another match

 If is extended to length k with no match, result: never produced
by the adversaries rainbow table

Source: https://en.wikipedia.org/wiki/Rainbow_table

back

https://en.wikipedia.org/wiki/Rainbow_table

Secure Remote Password protocol

 The Secure Remote Password protocol is a method in which an eavesdropper or
man-in-the-middle cannot obtain enough information to be able to brute force guess
a password without further interactions with the parties for each guess.

 Notation

back
key.Session :

function.hash way -One : ()

keys. public ingCorrespond : ,

revealed.publicly not andrandomly generated keys, private Ephermeral : ,

revealed.publicly parameter, scrambling Random :

 verifier.password shost' The :

. and password thefrom derivedkey privateA :

password. suser' The :

salt. suser' theas used string randomA :

). a called(often moduloroot primitive :

. modulo performed are nscomputatio All number. prime largeA :

K

H

BA

ba

u

v

saltx

P

s

generatorn g

nn

Secure Remote Password protocol

 Protocol

 To establish a password P with Steve, Carol picks a random salt s, and computes .

name)user (C
), lookup(vs

s
),(PsHx

agA
A

)(

)(

SHK

AvS

gvB

bu

b

uB,

)(

)(

SHK

gBS uxax

),,(1 KBAHM

),,(12 KMAHM

)verify (1M

)verify (2M
2M

1M

Carol Steve

xgvPsHx),,(

Source: power point "The Secure Password-Based Authentication Protocol" by Jeong Yunkyoung

