
MOTI YUNG

Google Inc. / Columbia University

 Joint work with Adam Young

 Kleptography:

The unbearable lightness of being

mistrustful

Background:

-The time is the Mid 90’s: Cryptography is the big Equalizer

(the small guys against governments); CRYPTO-WAR was

won (no capstone, no escrow!, Clipper chip attacked);

popular books on crypto (almost) make everyone (believe

she/he is) a cryptographer.

-For 1000’s of years Crypto was used as a protective

technology, and still is!

We started to investigate use of crypto as an attack

technology!!

(resulting in cryptovirology and kleptography)

There are simple attacks..

Fix the Pseudorandom Generator (inside the crypto box)

Use weak algorithm version (inside the box)

 Indeed, in many implementations these issues are not even

checked against, but they lead to “easy reverse engineering”

and are “detectable” from the I/O relations (as we saw

recently in the field).....

 So these attacks are not what we cover (but it is good to

recall).

Note: employing these– will break security globally, i.e., will

weaken the Internet....

How hard/ easy are undetectable (exclusive) backdoors ????

Public key is Great:

RSA Encryption/Decryption

N=p*q, where p,q are large primes known to the key owner

Everyone knows N and e.

Let d be the private exponent where ed = 1 mod (p-1)(q-1)

To encrypt m  Zn* (after padding..) compute: c = me mod n

To decrypt the ciphertext c compute: m = cd mod n

As far as we know: Only with known factorization given N and e,
one can find d.

 Asymmetry: only the key owner can decrypt

 Asymmetry is great: paradoxical protocols like Oblivious Transfer,
Mental poker, etc. can be implemented

Kleptography Motivation:

 Crypto on the Attack

Can we have cryptographic Trojan horses (backdoors)

that are robust against reverse-engineering. They are

only useful to the attacker (asymmetric backdoors!)

when that attacker is an eavesdropper (as in

surveillance!)

This will keep global security while providing the attacker

with exclusive use of insecurity

First Paper noted: Certain Organizations Will Love It!

Some criticism initially: well, there is enough easy

attacks, so why is this... This is theory...... 

But, some people understood the motivation! 

What is Kleptography?

Kleptography is the study of stealing information securely

(exclusively), efficiently and subliminally (unnoticeably).

Stealing from your most trusted “hardware protected systems,”

“un-scrutinized software,” (wherever you do not access the

algorithm) etc. [Stealing your keys/ secrets]

It employs Crypto against Crypto! Hiding Crypto in Crypto (as

steganography text hiding text)....

 i.e., Exploiting the asymmetry in PKC

-Note: Both Kleptography and Timing-Attacks (physical leakage)

presented first at Crypto’96 !

 The goal

To develop a robust backdoor within a cryptosystem that:

1) EXCLUSIVITY: Provides only to the attacker the desired secret
information (e.g., private key of the unwary user)

2) INDISTINGUISHABILITY: Cannot be detected in black-box
implementations (I/O access only as in tamper-resistant systems)
except by the attacker

3) FORWARD SECRECY: If a reverse-engineer (i.e., not the attacker)
breaches the black-box, then the previously stolen information
remains confidential (secure against reverse-engineering). Ideally,
confidentiality holds going forward as well (backword security) if
the exposure is temporary.

The successful reverse-engineer may learn that the attack is
carried out (different algorithm is run), BUT will be unable to use the
backdoor.

Note: asymmetry between “attacker” and “reverse engineer/ others”

Talk Road Map

Kleptographic attack on RSA key generation

Definition of a Secretly Embedded

Trapdoor with Universal

Protection (SETUP)

Kleptographic attack on the Diffie-Hellman key exchange

Implications to trust relationships

Recent developments

Kleptographic Theft of RSA Private Key

Problem: To devise a backdoor (i.e., a way to covertly obtain the RSA
private keys of users) that can be deployed in an RSA [RSA78] key
generation program such that:

— The resulting RSA key pair must “look like” a normal
RSA key pair (indistinguishability).

— The same copy of the key generation program is obtained
by everyone (it may be code signed for instance).

Note that a pseudorandom bit generator that uses a fixed secret seed
does not accomplish this. The seed or seeds will be revealed to the
reverse-engineer and the resulting pseudorandom bit sequences will
be revealed.

Algorithms that can be attacked

By compromising RSA key generation using a SETUP, we can

compromise:

— RSA [RSA78] (even with fixed exponent), Rabin [Ra79], etc.

— Independently of the encryption method: e.g., Properly

padded RSA: RSA-Optimal Asymmetric Encryption Padding

(OAEP) [BR95,FIPS01,Sh01].

— And other systems based on factoring…..

Direct Use/ Certification/ Validation: Simple Zero-Knowledge

protocols will not:

— reveal that a SETUP attack has taken place

— inhibit the operation of the SETUP attack in any way.

Normal RSA Key Generation

Let e be the public RSA exponent that is shared by all the

users (e.g., e is often taken to be 216+1 or 3)

1) choose a large number p randomly (e.g., p is 1024 bits long)

2) if p is composite or gcd(e,p - 1)  1 then goto step 1

3) choose a large number q randomly

4) if q is composite or gcd(e,q - 1)  1 then goto step 3

5) output the public key (n=pq,e) and the private key p

Note that the private exponent d is found by solving for (d,k) in

ed + k(n) = 1 (using the extended Euclidean alg.)

RSA Keys we will use

There will be a owner public key N=p*q (say of size 2048
bits).

There will be an RSA key of the attacker which we will call Y
which will be of half the size (say, 1024 bits),Y=y1 * y2, where
y1, y2 are large prime numbers of size 512 bits.

Kleptographic RSA Key Generation

The key generation algorithm is modified to contain a cryptotrojan. The
cryptotrojan contains *** the attacker’s RSA public key Y. This is an
earlier version of the attack [YY96,YY97], more mature versions exist
[YY04,YY05].

1) choose a large value s randomly (e.g., 1024-bits)

2) compute p = H(s) where H is a cryptographic one-way function

3) if p is composite then goto step 1

4) choose a large 1024-bit string RND randomly

5) compute c to be an encryption of s under RSA public Y (1024 bit RSA
key- Y half the size of n) c= s^e mod Y

6) solve for (q,r) in (c || RND) = pq + r {int-div: q quotient, r remainder }

7) if q is composite then goto step 1

8) output the public key (n=pq,e) and the private key p

Note that n is ~2048 bits in length

 c = Encryption by attacker’s RSA key Y of half the
size of n of the plaintext s

 (c || RND) = pq + r  (c || RND) – r = pq = n

 Note that r is about sqrt of n thus the (– r) operation
will not ruin c by more than one bit (the borrow bit).

 The value c is not hidden much by the high order
bits of n

The fact that p and q so chosen are likely to be primes
is by the prime number theorem.

Recovering the RSA Private Key

The private key is recovered as follows:

— The attacker obtains the public key (n,e) of the user

— Let u be the 1024 uppermost bits of n

— The attacker sets c1 = u and c2 = u+1 (c2 accounts for a

potential borrow bit having been taken from the

computation n = pq = (c || RND) – r

— The attacker (knowing the private key of Y) decrypts c1 and

c2 to get s1 and s2, respectively (**)

— Either p1 = H(s1) or p2 = H(s2) will divide n evenly

Only the attacker can perform this operation since only the

attacker knows the needed private decryption key in (**).

Definition of a SETUP

A SETUP attack is an algorithmic modification C’ of a

cryptosystem C with the following properties:

1) Halting Correctness: C and C' are efficient algorithms.

2) Output Indistinguishability: The outputs of C and C' are

computationally indistinguishable to all efficient algorithms

except for the attacker A.

3) Confidentiality of C: The outputs of C do not compromise the

security of the cryptosystem that C implements.

4) Confidentiality of C': The outputs of C' only compromise the

security of the cryptosystem that C’ implements with respect to

the attacker A.

5) Ability to compromise C': With overwhelming probability the

attacker A can break/ decrypt/ cryptanalyze at least one private

output of C' given a sufficient number of public outputs of C'.

Formal Aspects

There is a formal “security model and definitions”

The design employs tools of modern cryptography:

indistinguishability, careful probability distributions,

pseudorandomness and random oracle assumptions, etc.

There is a proof of security of the design (in the model). The

proof is more complicated than in regular systems (we have two

systems in one):

— RSA is a good key (the regular proof p,q are random primes)

— The hidden channel is secure (subliminal and exclusive)

 It is “fun” to use formal methodology and techniques to prove the

“security of klepto,” almost having “provable insecurity”  

But..

The security for the attacker is of half the size key of that of

the user…Y is half the size of n…

Can we do anything? … we will see… this was only the first

work..

Diffie-Hellman Key Exchange Parameters

Applies generically as a general scheme.

Concrete parameters (example): Let p be a large prime

Let g < p be an element in Zp* with order q

(p,q) must provide a suitable setting for the discrete-logarithm
problem (a typical setting is p=2q+1, p,q primes but also
smaller prime order subgroups possible).

The parameters (p,q) are public

The Diffie-Hellman Key Exchange

1) Alice chooses a < q randomly

2) Alice sends A = ga mod p to Bob

1) Bob chooses b < q randomly

2) Bob sends B = gb mod p to Alice

1) Alice computes k = Ba mod p

2) Bob computes k = Ab mod p

Observe that k = Ba = Ab mod p since gba = gab mod p

The Diffie-Hellman Assumption

The classic Diffie-Hellman key exchange relies on the
presumed intractability, under the DDH (in certain groups)
from g^a and g^b entire g^{a*b} is random

Asymmetry: if you know a or b, you get the random value
from the exchange !!!!

The RSA key generation has a large subliminal channel (half of
the bits can be fixed and we get a composite N) as was noted
earlier [Desmedt, A. Lenstra,..]. The DH problem does not
have subliminal channel that is large enough [as noted by
Simmons] (under the decisional assumption all bits are
equally random and useful)…

Do we need subliminal channel? Is DDH making DH secure wrt
setup?

So.. Is subliminal channel needed?

The computer Science Answer: If there isn’t one create one!

It’s the science of the artificial/ engineering, after all…….

The setup channel is a channel between the device and the

attacker and there are other ways to establish “secure

communication channels” when crypto is involved….

Setting for the DH SETUP attack

The setting is as follows:

1) The attacker can deploy the SETUP attack in Alice device.

2) The black-box can store state information across invocations

of the Diffie-Hellman algorithm (non-volatile memory).

3) The malicious designer can act as a passive eavesdropper

on all of Alice and Bob’s key exchanges.

Only (2) is a real mildly new thing, typical in hardware

devices….Point (1) holds if attacker is manufacturer or alg.

specifier; and (3) is implied by surveillance

Goal of the SETUP attack against DH

The goals of the simplified SETUP attack are:

1) To permit the malicious manufacturer to learn every other (or

all but one) Diffie-Hellman shared secret k that Alice and Bob

compute.

2) To prevent Alice and Bob (and everyone else) from knowing

that the attack is taking place without reverse eng.

3) Robustness against reverse-engineering:

- If only the code for the SETUP attack is disclosed then all

shared secrets past and future will remain confidential.

- A single DH shared secret may be compromised if the non-

volatile state information is disclosed.

Parameters for the DH SETUP attack

Parameters for the attack:

xm: private key generated by the malicious attacker for the

attack. xm is randomly chosen such that xm < q and xm is kept

secret by the attacker (e.g., in the attacker’s smart card).

ym: public key corresponding to xm. Hence, ym = gxm mod p. ym is

placed inside the black-box that Alice uses.

H: public cryptographic one-way hash function such that:

 H: {0,1}*  Zq

Intuition behind the DH SETUP attack

The idea is to have the attacker:

1) Generate a private key xm and public key ym = gxm mod p

2) Place the public key ym in the black-box

3) Design the black-box to compute a shared secret k between
Alice and the attacker in the 1st DH key exchange between
Alice and Bob where a is the secret exponent, i.e., compute.

 k = ym

a mod p

• Then use pseudorandomness derived from k instead of a
random exponent in Alice’s 2d key exchange.

This allows the attacker to learn the second Diffie-Hellman shared
secret!

The Diffie-Hellman SETUP Attack

First exchange:

• Alice’s device sends A1 = ga1 mod p to Bob where a1 R Zq

• Alice’s device stores a1 in non-volatile memory

• Bob’s device sends B1 = gb1 mod p to Alice where b1 R Zq

• Alice and Bob’s devices compute k1 = ga1b1 mod p

Second exchange:

• Alice’s device computes a2 = H(ym
a1 mod p)

• Alice’s device sends A2 = ga2 mod p to Bob

• Bob’s device sends B2 = gb2 mod p to Alice where b2 R Zq

• Alice and Bob’s devices compute k2 = ga2b2 mod p

Recovering the 2nd DH Shared Secret

The attacker:

1) Obtains A1 and B2 via first passive eavesdropping.

2) Computes a2 = H(A1
xm mod p)

3) Computes k2 = B2
a2 mod p

Note that attack uses the very commutativity of the DH problem:

The attacker computes A1
xm mod p = ga1xm = gxma1

 = ym
a1 mod p as Alice computes

In two DH key exchanges three exchanges are run !!!!

Security of the DH SETUP attack

Confidentiality w.r.t. the reverse-engineer:

— The reverse-engineer learns ym (we may assume that a1 is
learned and so at most a2 is compromised, if not yet
erased, so erasure is important).

— The reverse-engineer still must solve instances of the
Diffie-Hellman problem to learn past DH shared secrets k2.

Repeated SETUP: Chaining the DH attack

The attack generalizes to reveal t out of t+1 Diffie-Hellman

shared secrets (larger window of exposure to reverse-

engineer).

This is accomplished by chaining the use of the DH

pseudorandom exponent.

For example, Alice’s device stores a2 in non-volatile memory

and computes:

 a3 = H(ym
a2 mod p)

 instead of choosing a3 uniformly at random…repeating etc.

This is called a (t,t+1)-SETUP attack (or: repeated setup)

Attack Variation applied to

- Many of the DH based encryption and signature systems:

ElGamal, CS, etc. ElGamal sig.,

- DSA signatures: even if the signature sizes are 320 bits (two

elements of small subgroup), can extract the secret key of

large group size (say 1024 bits) from two signatures… since

in the middle of verification we have a full size… g^r

- Other Algebraic structures (e.g., elliptic curves, with curve

multiplication as the “exponentiation” operation)…

Recently: Small Space Kleptogram in RSA

KeyGen: Intuition Behind the Approach

Elliptic Curve Cryptography gives smaller ciphertexts (with
point compression) than RSA with a comparable security
parameter. This helps RSA key generation where the security
of attacker matches that of the key! (since small EC’s have
larger security than factoring).

The use of a twisted pair of binary curves gives a Diffie-
Hellman key exchange value that is (essentially) a bit string
selected uniformly at random, for hiding the key exchange
bits in uniorm string (crucial to drawing random RSA
instances). Twisted-Dual-EC suggested for use...Other
constructions are possible...

 → This suggests that we can embed a DH key exchange
value in the upper order bits of n = pq and achieve
indistinguishability of RSA backdoor public keys vs. “normal”
public keys.

Hint: Dual-EC generator may have a backdoor

given: a1  a2 = H(ym
a1 mod p)  a3 = H(ym

a2 mod p). ...

 g^(a1) g^(a2) g^(a3)

- This is the “repeated DH Setup”

- Top line interpretation: advancing state of prng

- Bottom line: output of prng (used in the exchange in DH setup).

 Backdoor: attacker derives top position i+1 from bottom position i

This is the logic behind the Dual-EC prng aleged backdoor.

Recovery w/ “randomly generated points” validated recently !!!!

(Twisted pair of EC for randomness.. also in the klepto literature)!!!!

More Recently
All other attacks needed hiding of one cryptographic tool inside

another. To argue that the attack “looks like” the regular version,

Random Oracle like arguments were used (ideal distribution).

Can we achieve attack on RSA keys that is a property of

cryptographic tools only without idealization to a random oracle?

(this gives a pure algebraic statement on strange relations

among two cryptographic distributions, one living inside another!)

Recently: Yes…. (in small space i.e., high security against

reverse engineering)…employing a novel “random key

exchange” again embedding strings derived from EC group as

high order strings inside the representation of an RSA composite

Conclusion- technical summary

The notion of a cryptographic backdoor that is robust against

reverse-engineering was introdcued (SETUP). Assymetry

between attacker and others can be find. Channels to convey

attack values can be found as well....

— SETUP attacks against RSA key generation was presented.

— SETUP attacks against Diffie-Hellman was presented. It

applies to many systems… (DSA,…etc.).

— Application of the DH (ECC) to RSA setup.

Hiding the algorithm in hw (or its spec’s or its constants,

or...)...which may have some advantages (not informing

attackers)! … also has a “dark side” when combined with

surveillance.

Conclusions– cryptographic systems

In all these schemes: we have proof of security of the system
(against all but the attacker) and a second security
(exclusivity) proof for the attacker [Two systems in one!] and
proofs are according to modern standards….

Cryptography is about security (we know..), it is about
solving seemingly paradoxical schemes (we know….), and is
also about looking for things that no one will ever look at (thus
it is also about non-trivial scrutiny, namely: “hacking with
purpose at strange places”). Always be on alert!!

Attacks on cryptosystems may come from different directions
(implementation, hidden malicious parties, physical
leakage…. And MALICIOUS IMPLEMENTOR).
Cryptographic thinking should apply to all layers/ stages.

Attacks evolve  Crypto must evolve!!!!!!

Conclusions– About Trust

Trust relationships: manufacturer has to be trusted (not merely the
fact that it is a tamper-resistant design that works ok/ tested) …and
implementations scrutinized as much as possible (also of software).

Trust within and about cryptographic system is “tricky” (also true in
dealing with other systems, but not everyone thinks about it
seriously! So cryptographer ought to look at these other things like
trusted platforms…). Know your algorithms (control & values)...

Black-Box Testing cryptography and trusting it – is it possible???
What about more general security systems? Attacker can only
attack after the system is working for a while or just one out of 1000
times (in financial case it may be worth it).

— Negative results on testing, forensics, etc were derived...

Beware! … the dual use nature of technology……and always
“Expect the unexpected!”

 THANK YOU!

