
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Implementing Memory Integrity Verification in
SimpleSim Simulator

Assignment 3 (developed by Kamran)

Getting Started

SimpleSim Simulator Setup

 It is assumed that:

 You have Virtual Box installed on your system.

 You have already setup the “ECE5451-VM” provided in previous assignment.

 You are able to run test application by running “make counters_bench_test”

 You are familiar with SimpleSim directory structure explained in previous assignment.

 Please revisit Assignment 2 slides if you have problems with above mentioned steps.

3

Getting the latest source files
 Login the ECE5451-VM using the following credentials:

 Username: student

 Password: student5451

 Enter the SimpleSim_Public directry:
 [student@ECE5451-VM ~]$ cd SimpleSim_Public/
[student@ECE5451-VM ~/SimpleSim_Public]$

 Run “git pull”. This will download all the latest source files in your local machine.
 [student@ECE5451-VM ~/SimpleSim_Public]$ git pull

 Several new files will be added which you can find in SimpleSim_Public/simulator
directory. Relevant new files are:

 MerkleTreeDram.cpp, MerkleTreeDram.h, MacTreeDram.cpp, MacTreeDram.h

 Run “make clean” to remove old executables, and then run “make” to compile the simulator
 [student@ECE5451-VM ~/SimpleSim_Public]$ make clean

 [student@ECE5451-VM ~/SimpleSim_Public]$ make

4

Running a Test Application
 To run a test application, do

 make counters_bench_test

 Currently, Merkle Tree Integrity Verification is turned on.

 You can change this in Parameters.h DRAM_TYPE

 For now, you’ll notice the following:

 Cache Hits = 0 because of no cache controller implementation. Full
cache controller implementation will be posted later as a solution for
Assignment 2.

 Hash Computations = 0 because of no Integrity Verification
implementation.

5

Constructing Merkle Tree:

Total Blocks = 16384

Starting Application...

Done...!

SIMULATOR STATISTICS

CORE SUMMARY

Instructions Count 2700007

Read Accesses 406251

Write Accesses 206251

CACHE SUMMARY

Cache Hits 0

Cache Misses 406251

Cache Evictions 0

Cache Hit Rate 0

DRAM SUMMARY

DRAM Reads 406251

DRAM Writes 0

Hash Computations 0

Total Time (us) 81939808

make[1]: Leaving directory ‘home/student/SimpleSim_Public/tests/benchmarks/counters'

TEST: counters_bench_test PASSED

Task 1: Implementing Merkle Tree
for Integrity Verification

Merkle Tree based Integrity Verification

 In this task, you need to construct a Merkle Tree to protect 1MB of
user’s application data.

 Application visible space is 1MB.

 A Hash computation function is provided which generates a 16 Byte hash.

 The cache line size is 64Bytes, therefore 4 hashes can fit in one cache line.

 Hence, you need to construct a “Quad Tree” where each parent has 4 children.

 You need to compute the additional space needed for a quad tree for 1MB user
level data.

 Implement memory integrity verification using this quad tree.

 All configuration parameters can be found in Parameters.h file.

7

Merkle Tree Implementation

 simulator/MerkleTreeDram.h provides an interface to the simulator
via MerkleTreeDram class.

 bool VerifyHashChain(uint64_t data_cl_num);

 Return ‘true’ if integrity of the block ‘data_cl_num’ is verified.

 Crash the application by calling ‘assert(false);’ if an integrity violation detected.

 void UpdateHashChain(uint64_t data_cl_num);

 Update the hash chain for the given block from leaf node up to the root node.

 You need to implement these (and several other) functions in
simulator/MerkleTreeDram.cpp file.

 Incomplete function definitions are currently marked with “TODO”

 You are free to add any other functions/variables to achieve the
above mentioned desired functionality.

8

Sample Output
Constructing Merkle Tree:

Level[0] Nodes = 16384

Level[1] Nodes = 4096

Level[2] Nodes = 1024

Level[3] Nodes = 256

Level[4] Nodes = 64

Level[5] Nodes = 16

Level[6] Nodes = 4

Total Levels = 7

Total Blocks = 21844

Starting Application...

Done...!

SIMULATOR STATISTICS

CORE SUMMARY

Instructions Count 2700007

Read Accesses 400001

Write Accesses 200001

CACHE SUMMARY

Cache Hits 393749

Cache Misses 6252

Cache Evictions 5229

Cache Hit Rate 0.98437

DRAM SUMMARY

DRAM Reads 86619

DRAM Writes 41832

Hash Computations 80367

Total Time (us) 54369501

make[1]: Leaving directory `/home/syed/SimpleSim/tests/benchmarks/counters'

TEST: counters_bench_test PASSED

9

Checking The Correctness

 To test if your implementation is able to detect ‘malicious modifications’ to the
DRAM data contents, you can enable Fault Injector from Parameters.h file.

 Set FAULT_INJECTION to 1

 You can set the probability of injecting a fault (in percentage) by setting the parameter
FAULT_PROBABILITY

 MerkleTreeDram::InjectFault(uint64_t addr) function injects a fault on-purpose
at a random location in the cache line.

 This function is called by the simulator according to the FAULT_PROBABILITY set by the user.

 If a fault is injected, a message about it is printed on the screen.

 After the fault injection, upon subsequent read to this cache line, the system should detect a
'malicious modification' of this data.

 The instructor or TA can also use Fault Injector as a tool to check the
correctness of your implementation.

10

Task 2: Implementing MAC Tree
for Integrity Verification

MAC Tree based Integrity Verification

 In this task, you need to construct a MAC Tree to protect 1MB of user’s
application data.

 Application visible space is 1MB.

 A MAC computation function is provided which generates a 8 Byte MAC (64 bits). Each
version counter is configured to 7 Bytes (56 bits).

 The cache line size is 64Bytes, therefore 8 counters and one MAC (also called ‘tag’) can fit
in one cache line.

 Hence, you need to construct a tree where each parent has 8 children.

 The format of a cache line with MAC and counters is as follows:

 <8Byte MAC>|<7Byte counter0>|<7Byte counter1 >|………|<7Byte counter7>

 You need to compute the additional space needed for MAC tree for 1MB user level data.

 Implement memory integrity verification using this MAC tree.

 All configuration parameters can be found in Parameters.h file.

12

MAC Tree Implementation

 simulator/MacTreeDram.h provides an interface to the simulator via
MacTreeDram class.

 bool VerifyHashChain(uint64_t data_cl_num);

 Return ‘true’ if integrity of the block ‘data_cl_num’ is verified.

 Crash the application by calling ‘assert(false);’ if an integrity violation detected.

 void UpdateHashChain(uint64_t data_cl_num);

 Update the MAC chain for the given block from leaf node up to the root node.

 You need to implement these (and several other) functions in
simulator/MacTreeDram.cpp file.

 Incomplete function definitions are currently marked with “TODO”

 You are free to add any other functions/variables to achieve the
above mentioned desired functionality.

13

Sample Output
Constructing Mac Tree:

Level[0] Nodes = 16384

Level[1] Nodes = 2048

Level[2] Nodes = 256

Level[3] Nodes = 32

Level[4] Nodes = 4

Total Levels = 5

Total Blocks = 20772

Starting Application...

Done...!

SIMULATOR STATISTICS

CORE SUMMARY

Instructions Count 2700007

Read Accesses 400001

Write Accesses 200001

CACHE SUMMARY

Cache Hits 393749

Cache Misses 6252

Cache Evictions 5229

Cache Hit Rate 0.98437

DRAM SUMMARY

DRAM Reads 63657

DRAM Writes 31374

Hash Computations 57405

Total Time (us) 51284806

make[1]: Leaving directory `/home/syed/SimpleSim/tests/benchmarks/counters'

14

Checking The Correctness

 To test if your implementation is able to detect ‘malicious modifications’ to the
DRAM data contents, you can enable Fault Injector from Parameters.h file.

 Set FAULT_INJECTION to 1

 You can set the probability of injecting a fault (in percentage) by setting the parameter
FAULT_PROBABILITY

 MacTreeDram::InjectFault(uint64_t addr) function injects a fault on-purpose at
a random location in the cache line.

 This function is called by the simulator according to the FAULT_PROBABILITY set by the user.

 If a fault is injected, a message about it is printed on the screen.

 After the fault injection, upon subsequent read to this cache line, the system should detect a
'malicious modification' of this data.

 The instructor or TA can also use Fault Injector as a tool to check the
correctness of your implementation.

15

