
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

SimpleSim: A Single-Core System Simulator

Assignment 2 (developed by Kamran)

Based on Pin PLDI Tutorial 2007

by Kim Hazelwood, David Kaeli, Dan Connors, and Vijay Janapa Reddi

2

Agenda

I. Pin Intro and Overview

II. Fundamentals of Pin based SimpleSim Simulator

III. Assignment 2: Implementing a simple Cache model in SimpleSim

IV. Assignment 3 (Not yet included): Implementing Memory Integrity Verification in
SimpleSim

V. Assignment 4 (Not yet included): Demonstrating a Cache Side-Channel Attack in
SimpleSim

Part One:
Introduction and Overview

What is Instrumentation?

 A technique that inserts extra code into a program to collect
runtime information

 Instrumentation approaches:

 Source instrumentation:

 Instrument source programs

 Binary instrumentation: (e.g. using Intel’s Pin)

 Instrument executables directly

4

Why use Dynamic Instrumentation?

 No need to recompile or relink

 Discover code at runtime

 Handle dynamically-generated code

 Attach to running processes

5

How is Instrumentation used in Compiler Research?

Program analysis

Code coverage

Call-graph generation

Memory-leak detection

 Instruction profiling

Thread analysis

 Thread profiling

 Race detection

6

How is Instrumentation used in Computer
Architecture Research?

• Trace Generation

• Branch Predictor and Cache Modeling

• Fault Tolerance Studies

• Emulating Speculation

• Emulating New Instructions

7

Advantages of Pin Instrumentation
 Easy-to-use Instrumentation:

 Uses dynamic instrumentation

 Do not need source code, recompilation, post-linking

 Programmable Instrumentation:
 Provides rich APIs to write in C/C++ your own instrumentation tools (called Pintools)

 Multiplatform:
 Supports x86, x86-64, Itanium, Xscale

 Supports Linux, Windows, MacOS

 Robust:
 Instruments real-life applications: Database, web browsers, …

 Instruments multithreaded applications

 Supports signals

 Efficient:
 Applies compiler optimizations on instrumentation code

8

Using Pin

 Launch and instrument an application

$ pin –t pintool –- application

9

Instrumentation engine
(provided in the kit)

Instrumentation tool
(write your own, e.g. SimpleSim)

Attach to and instrument an application

$ pin –t pintool –pid 1234

Pin Instrumentation APIs

 Basic APIs are architecture independent:

 Provide common functionalities like determining:

Control-flow changes

Memory accesses

 Architecture-specific APIs

 e.g., Info about segmentation registers on IA32

 Call-based APIs:

 Instrumentation routines

 Analysis routines

10

Instrumentation vs. Analysis

 Instrumentation routines define where instrumentation is inserted

 e.g., before instruction

C Occurs first time an instruction is executed

 Analysis routines define what to do when instrumentation is activated

 e.g., increment counter

C Occurs every time an instruction is executed

11

Pintool 1: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

12

counter++;

counter++;

counter++;

counter++;

counter++; Instructions inserted by Instrumentation tool
(e.g. SimpleSim)

Application’s Instructions

Pintool 1: Instruction Count Output

$ /bin/ls

Makefile imageload.out itrace proccount

imageload inscount0 atrace itrace.out

$ pin -t inscount0 -- /bin/ls

Makefile imageload.out itrace proccount

imageload inscount0 atrace itrace.out

 Count 422838

13

instrumentation routine

analysis routine

#include <iostream>

#include "pin.h"

UINT64 icount = 0;

void docount() { icount++; }

void Instruction(INS ins, void *v)

{

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);

}

void Fini(INT32 code, void *v)

{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[])

{

PIN_Init(argc, argv);

INS_AddInstrumentFunction(Instruction, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

ManualExamples/inscount0.cpp

14

Pintool 2: Instruction Trace

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax

15

print_ip(ip);

print_ip(ip);

print_ip(ip);

print_ip(ip);

print_ip(ip); Instructions inserted by Instrumentation tool
(e.g. SimpleSim)

Application’s Instructions

Need to pass IP argument to the analysis routine (i.e. print_ip())

Pintool 2: Instruction Trace Output

$ pin -t itrace -- /bin/ls

Makefile imageload.out itrace proccount

imageload inscount0 atrace itrace.out

 $ head -4 itrace.out (printing trace file)

0x40001e90

0x40001e91

0x40001ee4

0x40001ee5

16

instrumentation routine

analysis routine

#include <stdio.h>
#include "pin.H"
FILE * trace;

void printip(void *ip){fprintf(trace,"%p\n",ip);}

void Instruction(INS ins, void *v) {
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip,

IARG_INST_PTR, IARG_END);
}

void Fini(INT32 code, void *v) { fclose(trace); }

int main(int argc, char * argv[]) {
trace = fopen("itrace.out", "w");
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);

PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return 0;

}

ManualExamples/inscount0.cpp

17

Argument to

analysis routine

Examples of Arguments to Analysis Routine

 IARG_INST_PTR

 Instruction pointer (program counter) value

 IARG_UINT32 <value>

 An integer value

 IARG_REG_VALUE <register name>

 Value of the register specified

 IARG_BRANCH_TARGET_ADDR

 Target address of the branch instrumented

 IARG_MEMORY_READ_EA

 Effective address of a memory read

And many more … (refer to the Pin manual for details)

18

Instrumentation Points

 Instrument points relative to an instruction:

 Before (IPOINT_BEFORE)

 After:

a. Fall-through edge (IPOINT_AFTER)

b. Taken edge (IPOINT_TAKEN_BRANCH)

19

cmp %esi, %edx

jle <L1>

mov $0x1, %edi <L1>:

mov $0x8,%edi

count()

count()

count()

Part Two:
Fundamentals of SimpleSim Simulator

Setting up The System

 Download and Install VirtualBox from here.

 A Ubuntu 14.04 Virtual Machine “ECE5451-VM” is provided.

 Download the ECE5451-VM image from Piazza or the following
link:
https://drive.google.com/open?id=0B8FDhZrBLHIyMFZXVjVUcEh
6Q28

 Import the ECE5451-VM in VirtualBox (see next slides…)

21

https://www.virtualbox.org/wiki/Downloads?replytocom=98578
https://drive.google.com/open?id=0B8FDhZrBLHIyMFZXVjVUcEh6Q28

Importing a Virtual Appliance in OVF Format

To Import a Virtual Appliance provided in OVF Format

 1. Select File | Import Appliance from the taskbar at the top of
the window. The Appliance Import Wizard will appear.

22

Importing a Virtual Appliance in OVF Format

To Import a Virtual Appliance provided in OVF
Format

 2. Open the file dialog and select the OVF
file with the .ovf file extension.

 3. The wizard will then display the virtual
machines in the OVF file.

 Users can double-click on the description items to
configure the settings of the VM.

 Upon clicking Import, the disk images will be copied
and the virtual machines will be created according to
the settings that are explained in the dialog.

23

Setting up SimpleSim Simulator

 Login the ECE5451-VM using the following credentials:

 Username: student

 Password: student5451

 You won’t need to login as Admin, but in case you do, use the following
credentials:

 Username: Admin

 Password: Admin5451

 The simulator source code resides in SimpleSim_Public directory.

 [student@ECE5451-VM ~]$ cd SimpleSim_Public/

[student@ECE5451-VM ~/SimpleSim_Public]$

 Compile the simulator by simply running make
 [student@ECE5451-VM ~/SimpleSim_Public]$ make

24

Running a Test Application
 Currently, a simple application "counters" is added under tests/benchmarks/counters/counters.cc

 To run this application, do
 [student@ECE5451-VM ~/SimpleSim_Public]$ make counters_bench_test

 Compile the simulator by simply running make. The simulator prints various stats. (For now you’ll see Cache Hits
and Cache Evictions to be 0 as you need to implement the cache controller…)

[student@ECE5451-VM ~/SimpleSim_Public]$ make

Starting Application...

Done...!

SIMULATOR STATISTICS

Instructions Count 10894

Read Accesses 3973

Write Accesses 1447

Cache Hits 3584

Cache Misses 389

Cache Evictions 4

Total Time (us) 1883644

make[1]: Leaving directory `/home/student/SimpleSim_Public/tests/benchmarks/counters'

TEST: counters_bench_test PASSED

25

SimpleSim Directory Structure

 SimpleSim_Public folder contains various subdirectories:

 pin_home: Contains Intel’s Pin related files. Nothing should be changed here.

 simulator: Contains SimpleSim’s instrumentation files, e.g. Cache and DRAM
models.

 simulator/simulator_main.cc is the top level file.

 simulator/Parameters.h is the configuration file for the simulator.

 tests: Contains application(s) to run using the simulator.

26

Part Three:
Task 1: Implementing a simple Cache model

Cache Model Requirements

 You need to implement a simple Set-Associative L1 Cache.

 The system two level memory hierarchy: L1 Cache and DRAM

 The system is single-core, hence no cache coherence protocol required.

 The Cache Model requires the following features:

 Configurable cache line size, capacity & associativity.

 “Least Recently Used” replacement policy.

 Only ‘dirty’ cache lines evicted from the cache need to be written back to
DRAM.

 All configuration parameters can be added to Parameters.h file.

28

Cache Model Implementation
 simulator/SimpleCache.h provides an interface to the simulator via SimpleCache

class.

 bool Read(uint64_t addr, uint8_t* data_buf);

 Return ‘false’ if Cache miss; ‘true’ if Cache Hit.

 The data read from cache should be copied into data_buf.

 uint64_t Write(uint64_t addr, uint8_t* data_buf);

 The data to be written in cache is provided in data_buf.

 If cache line ‘addr’ already exists in cache, update it and set dirty bit. No eviction, so return NULL.

 If cache line ‘addr’ is not present in cache, insert it. Return evicted address if an eviction of a dirty cache line
happens. Evicted data should be stored in data_buf. Return NULL if no eviction happens.

 data_buf size is equal to CACHELINE_SIZE configured in Parameters.h

 Implement these functions in simulator/SimpleCache.cpp file.

 A correct implementation should result in about the same number of cache
hits/miss/evictions for the same application every time.

29

