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Part One: 
Introduction and Overview



What is Instrumentation?

 A technique that inserts extra code into a program to collect 
runtime information

 Instrumentation approaches:

 Source instrumentation:

 Instrument source programs

 Binary instrumentation: (e.g. using Intel’s Pin)

 Instrument executables directly
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Why use Dynamic Instrumentation?

 No need to recompile or relink

 Discover code at runtime

 Handle dynamically-generated code

 Attach to running processes
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How is Instrumentation used in Compiler Research?

Program analysis

Code coverage

Call-graph generation

Memory-leak detection

 Instruction profiling

Thread analysis

 Thread profiling

 Race detection
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How is Instrumentation used in Computer 
Architecture Research?

• Trace Generation

• Branch Predictor and Cache Modeling

• Fault Tolerance Studies

• Emulating Speculation

• Emulating New Instructions
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Advantages of  Pin Instrumentation
 Easy-to-use Instrumentation:

 Uses dynamic instrumentation 

 Do not need source code, recompilation, post-linking

 Programmable Instrumentation:
 Provides rich APIs to write in C/C++ your own instrumentation tools (called Pintools)

 Multiplatform:
 Supports x86, x86-64, Itanium, Xscale

 Supports Linux, Windows, MacOS

 Robust:
 Instruments real-life applications: Database, web browsers, …

 Instruments multithreaded applications

 Supports signals

 Efficient:
 Applies compiler optimizations on instrumentation code 
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Using Pin

 Launch and instrument an application

$ pin –t pintool –- application
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Instrumentation engine
(provided in the kit)

Instrumentation tool
(write your own, e.g. SimpleSim)

Attach to and instrument an application

$ pin –t pintool –pid 1234



Pin Instrumentation APIs

 Basic APIs are architecture independent:

 Provide common functionalities like determining:

Control-flow changes

Memory accesses

 Architecture-specific APIs

 e.g., Info about segmentation registers on IA32 

 Call-based APIs:

 Instrumentation routines

 Analysis routines
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Instrumentation vs. Analysis 

 Instrumentation routines define where instrumentation is inserted

 e.g., before instruction

C Occurs first time an instruction is executed

 Analysis routines define what to do when instrumentation is activated

 e.g., increment counter

C Occurs every time an instruction is executed

11



Pintool 1: Instruction Count

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax
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counter++;

counter++;

counter++;

counter++;

counter++; Instructions inserted by Instrumentation tool
(e.g. SimpleSim)

Application’s Instructions



Pintool 1: Instruction Count Output

$ /bin/ls

Makefile imageload.out itrace proccount

imageload inscount0 atrace itrace.out

$ pin -t inscount0 -- /bin/ls 

Makefile imageload.out itrace proccount

imageload inscount0 atrace itrace.out

 Count 422838
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instrumentation routine

analysis routine

#include <iostream>

#include "pin.h"

UINT64 icount = 0;

void docount() { icount++; }

void Instruction(INS ins, void *v) 

{

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);

}

void Fini(INT32 code, void *v) 

{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[])

{

PIN_Init(argc, argv);

INS_AddInstrumentFunction(Instruction, 0);

PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();

return 0;

}

ManualExamples/inscount0.cpp
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Pintool 2: Instruction Trace

sub $0xff, %edx

cmp %esi, %edx

jle <L1>

mov $0x1, %edi

add $0x10, %eax
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print_ip(ip);

print_ip(ip);

print_ip(ip);

print_ip(ip);

print_ip(ip); Instructions inserted by Instrumentation tool
(e.g. SimpleSim)

Application’s Instructions

Need to pass IP argument to the analysis routine ( i.e. print_ip() )



Pintool 2: Instruction Trace Output

$ pin -t itrace -- /bin/ls

Makefile imageload.out itrace proccount

imageload inscount0 atrace itrace.out

 $ head -4 itrace.out (printing trace file)

0x40001e90 

0x40001e91 

0x40001ee4 

0x40001ee5 
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instrumentation routine

analysis routine

#include <stdio.h>
#include "pin.H"
FILE * trace;

void printip(void *ip){fprintf(trace,"%p\n",ip);}

void Instruction(INS ins, void *v) {
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)printip,   

IARG_INST_PTR, IARG_END);
}

void Fini(INT32 code, void *v) { fclose(trace); }

int main(int argc, char * argv[]) {
trace = fopen("itrace.out", "w");
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);

PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return 0;

}

ManualExamples/inscount0.cpp
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Argument to 

analysis routine



Examples of  Arguments to Analysis Routine

 IARG_INST_PTR

 Instruction pointer (program counter) value

 IARG_UINT32 <value>

 An integer value

 IARG_REG_VALUE <register name>

 Value of the register specified

 IARG_BRANCH_TARGET_ADDR

 Target address of the branch instrumented

 IARG_MEMORY_READ_EA

 Effective address of a memory read

And many more … (refer to the Pin manual for details)
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Instrumentation Points

 Instrument points relative to an instruction:

 Before (IPOINT_BEFORE)

 After: 

a. Fall-through edge (IPOINT_AFTER)

b. Taken edge (IPOINT_TAKEN_BRANCH)
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cmp %esi, %edx

jle <L1>

mov $0x1, %edi <L1>: 

mov $0x8,%edi

count()

count()

count()



Part Two: 
Fundamentals of  SimpleSim Simulator



Setting up The System

 Download and Install VirtualBox from here.

 A Ubuntu 14.04 Virtual Machine “ECE5451-VM” is provided.

 Download the ECE5451-VM image from Piazza or the following 
link: 
https://drive.google.com/open?id=0B8FDhZrBLHIyMFZXVjVUcEh
6Q28

 Import the ECE5451-VM in VirtualBox (see next slides…)
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https://www.virtualbox.org/wiki/Downloads?replytocom=98578
https://drive.google.com/open?id=0B8FDhZrBLHIyMFZXVjVUcEh6Q28


Importing a Virtual Appliance in OVF Format

To Import a Virtual Appliance provided in OVF Format

 1. Select File | Import Appliance from the taskbar at the top of 
the window. The Appliance Import Wizard will appear.
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Importing a Virtual Appliance in OVF Format

To Import a Virtual Appliance provided in OVF 
Format

 2. Open the file dialog and select the OVF 
file with the .ovf file extension.

 3. The wizard will then display the virtual 
machines in the OVF file. 

 Users can double-click on the description items to 
configure the settings of the VM. 

 Upon clicking Import, the disk images will be copied 
and the virtual machines will be created according to 
the settings that are explained in the dialog.
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Setting up SimpleSim Simulator

 Login the ECE5451-VM using the following credentials:

 Username: student

 Password: student5451

 You won’t need to login as Admin, but in case you do, use the following 
credentials:

 Username: Admin

 Password: Admin5451

 The simulator source code resides in SimpleSim_Public directory.

 [student@ECE5451-VM ~]$ cd SimpleSim_Public/

[student@ECE5451-VM ~/SimpleSim_Public]$ 

 Compile the simulator by simply running make
 [student@ECE5451-VM ~/SimpleSim_Public]$ make
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Running a Test Application
 Currently, a simple application "counters" is added under tests/benchmarks/counters/counters.cc

 To run this application, do
 [student@ECE5451-VM ~/SimpleSim_Public]$ make counters_bench_test

 Compile the simulator by simply running make. The simulator prints various stats. (For now you’ll see Cache Hits 
and Cache Evictions to be 0 as you need to implement the cache controller…)

[student@ECE5451-VM ~/SimpleSim_Public]$ make

Starting Application... 

Done...! 

*******************************************************

SIMULATOR STATISTICS                  

*******************************************************

Instructions Count 10894

Read Accesses 3973

Write Accesses 1447

Cache Hits 3584

Cache Misses 389

Cache Evictions 4

Total Time (us) 1883644

*******************************************************

make[1]: Leaving directory `/home/student/SimpleSim_Public/tests/benchmarks/counters'

TEST: counters_bench_test PASSED
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SimpleSim Directory Structure

 SimpleSim_Public folder contains various subdirectories:

 pin_home: Contains Intel’s Pin related files. Nothing should be changed here.

 simulator: Contains SimpleSim’s instrumentation files, e.g. Cache and DRAM 
models. 

 simulator/simulator_main.cc is the top level file.

 simulator/Parameters.h is the configuration file for the simulator.

 tests: Contains application(s) to run using the simulator. 
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Part Three: 
Task 1: Implementing a simple Cache model



Cache Model Requirements

 You need to implement a simple Set-Associative L1 Cache.

 The system two level memory hierarchy: L1 Cache and DRAM

 The system is single-core, hence no cache coherence protocol required.

 The Cache Model requires the following features:

 Configurable cache line size, capacity & associativity.

 “Least Recently Used” replacement policy.

 Only ‘dirty’ cache lines evicted from the cache need to be written back to 
DRAM.

 All configuration parameters can be added to Parameters.h file.
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Cache Model Implementation
 simulator/SimpleCache.h provides an interface to the simulator via SimpleCache

class.

 bool Read(uint64_t addr, uint8_t* data_buf);

 Return ‘false’ if Cache miss; ‘true’ if Cache Hit. 

 The data read from cache should be copied into data_buf.

 uint64_t Write(uint64_t addr, uint8_t* data_buf);

 The data to be written in cache is provided in data_buf.

 If cache line ‘addr’ already exists in cache, update it and set dirty bit. No eviction, so return NULL.

 If cache line ‘addr’ is not present in cache, insert it. Return evicted address if an eviction of a dirty cache line
happens. Evicted data should be stored in data_buf. Return NULL if no eviction happens.

 data_buf size is equal to CACHELINE_SIZE configured in Parameters.h

 Implement these functions in simulator/SimpleCache.cpp file.

 A correct implementation should result in about the same number of cache 
hits/miss/evictions for the same application every time.
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