
CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

HaTCh: State-of-the-Art in Hardware Trojan Detection

Lecture 9a • HaTCh follows http://arxiv.org/abs/1605.08413 and

https://eprint.iacr.org/2014/943.pdf

http://arxiv.org/abs/1605.08413
https://eprint.iacr.org/2014/943.pdf

Syed Kamran Haider†, Chenglu Jin†, Masab Ahmed†, Devu Manikantan Shila‡,

Omer Khan† and Marten van Dijk†

†University of Connecticut

‡United Technologies Research Center

HaTCh: Advancing the State-of-the-Art in
Hardware Trojan Detection

http://scl.uconn.edu/

Outline

 Hardware Trojans and Problem Statement

 Existing Hardware Trojan Detection Techniques

 Characterization of Hardware Trojans

 Advanced Properties

 HaTCh: Hardware Trojan Catcher

 Algorithm

 Comparisons with other schemes

 Evaluation

 Conclusion

3

 A malicious logic embedded inside a larger circuit resulting in data leakage or harm to the
normal functionality

 Hardware Trojans have two major classes
 Trigger Activated: Activates upon some special internal/external event

 Always Active: Remain always active to deliver the payload

 Several possible payloads
 Denial of Service

 Leakage of Sensitive Information

 Reducing the battery life of the device

 Weakening of Security mechanisms

 E.g. bypassing protection circuitry, discard counter measures etc.

What is a Hardware Trojan?

4

Hardware Trojans Examples [1][2]

[1] Y. Jin, “Experiences in Hardware Trojans Design and Implementation”
[2] G. Becker, “Implementing Hardware Trojans”

5

Types of Trojan

Trigger Actors

Payload / Consequence of attack
Actor Action Input Channel

Output/Leaking

channel

Trigger Activated

Attacker with

physical access to

the device

 Particular legitimate input sequence

 Particular illegitimate input sequence

Standard Input

 I/O pins

 Keyboard

 Serial/Parallel

protocols

Standard / Unused

Outputs

 I/O pins

 LCD

 LEDs

 Serial/Parallel

protocols

Side Channels

 EM Waves

 Hidden in

standard output

Leaking sensitive information

 Encryption Key

 Plain text

Denial of service

 Generating incorrect results

 Make the device stop working

Reduce the reliability of the device

 Drain the battery

 Taking control through unused

functional units or interfaces

Unused Inputs

 I/O pins

 Serial/Parallel

protocols

Legitimate User

 Normal operation for certain n>N

 Particular legitimate input sequence

 Illegitimate input sequence by mistake

 Certain time interval between two

legal inputs

Standard Input

 I/O pins

 Keyboard

 Serial/Parallel

protocols

Always Active N/A N/A Internal IP Core
Side Channels

 EM Waves
Leak the Encryption Key

http://www.utdallas.edu/~gxm112130/papers/host09.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6081414

 IP Core Design Steps
1) System level design is modeled in C/C++, MATLAB etc.

2) RTL design is modeled in some HDL e.g. Verlilog, VHDL

3) Xilinx FPGA Design Flow takes HDL Design entry

a) Synthesis: Creates Xilinx-specific Netlist NGC file

b) Translate: Reduces logical design to Xilinx primitives

c) Map: Maps the design on target FPGA

d) Place & Route: Places & routes the design to meet timing

e) BitGen: Produces a BIT file to program the FPGA

 In practice the NGC netlist of the IP Core is provided to the customer
 It still hides the source code

 Possibility to include the NGC netlist in a larger design

 Note: This means that rest of the Toolchain is in control of the customer and can therefore
be trusted

 We define access to a Closed Source IP Core as access to the NGC netlist only

 We assume in the remainder that the customer has access to Closed Source IP Core

 Hardware Trojans can be embedded in the IP Core

FPGA Design Flow

Behavioral/

Functional

Specification

Behavioral (RTL)

Synthesis

Translate

Map

Place & Route

BitGen

Specifications

Program FPGA

.V

.BIT

.NGC

.NGD

.NCD

.NCD

 Generalized ASIC Design FLow
 High Level Design

 Specification Capture

 Design Capture in C, C++, SystemC or SystemVerilog

 RTL Design
 Verilog/VHDL

 System, Timing and Logic Verification
 Is the logic working correctly?

 Physical Design
 Floorplanning, Place and Route, Clock insertion

 Performance and Manufacturability Verification
 Extraction of Physical View

 Verification of timing and signal integrity

 Design Rule Checking/ LVS

 In practice the RTL Synthesized netlist of the IP Core is provided to the
customer

 Similar to FPGAs, Hardware Trojans can be embedded in the IP Cores

ASIC Design Flow

7

Behavioral/

Functional

Specification

Behavioral (RTL)

Synthesis

Structural

Specification

Physical Synthesis

Physical

Specification

To CMOS Fab.

Specifications

Check

Check

Check

Untrusted Source Code:

 Third party only provides netlist file (e.g. NGC) of the IP
Core
 A Trojan could have been implanted in the source code

 Netlist file obfuscates HDL source code

 Hard to detect an embedded Trojan

Untrusted Toolchain:

 Toolchain used to generate Netlists could be malicious†
 User trusts only a finite set of trustworthy Tools

 E.g. Cadence, Synopsis, Xilinx etc

 IP Core provider may not use these trustworthy tools

Design Flow Vulnerabilities

† TURING AWARD LECTURE “Reflections on Trusting Trust” by Ken Thompson

Behavioral/

Functional

Specification

Behavioral (RTL)

Synthesis

Structural

Specification

Physical Synthesis

Physical

Specification

To CMOS Fab.

Specifications

Check

Check

Check

Problem Statement & Motivation

 IP cores are heavily used in modern systems

 IP cores are vulnerable to insertion of Hardware Trojans (HTs)

 State of the art HT detection schemes have either of the following
two limitations

1. They can be defeated by new ‘sophisticated’ HTs.

2. They have infeasibly high computational complexity.

This leads to the following two questions:

1. Which exponentially large class of HTs a tool can detect with negligible false
negative rate?

2. How to design an efficient detection tool with controlled false positive rate
which is computationally feasible for this large class of HTs?

9

The Big Picture

10

1.0E+00

1.0E+08

1.0E+16

1.0E+24

1.0E+32

1.0E+40

1.0E+48

1.0E+56

1.0E+64

1.0E+72

1.0E+80

2 4 8 16 32 64 128 256

C
o
m

p
le

x
it
y
 (
ti
m

e
 u

ni
ts

)

of Inputs of the circuit

Pre-Silicon Phase Computational Complexities

VeriTrustX FANCIX HaTCh

𝑎1

𝑂

𝑎2

𝑎𝑚−1
𝑎𝑚

…
…

… …

log2(𝑚) levels

HaTCh
VeriTrust

FANCI
Unknown

Characterization

TrustHub Benchmarks

Hardware Trojan Coverage

False Positives

HaTCh

VeriTrust

FANCI
Uncontrollable

𝜌

Controllable

False Negatives

Unknown

Characterization

2−𝜆 for 𝐻𝑑,𝑡,𝛼

Controllable

XOR-LFSR

Outline

 Hardware Trojans and Problem Statement

 Existing Hardware Trojan Detection Techniques

 Characterization of Hardware Trojans

 Advanced Properties

 HaTCh: Hardware Trojan Catcher

 Algorithm

 Comparisons with other schemes

 Evaluation

 Conclusion

11

Existing Trojan Detection Schemes

 Unused Circuit Identification (UCI)

 Distinguishes minimally used logic from the other parts of the circuit.

 Intuition that a HT almost always remains inactive in the circuit to pass the functional
verification.

 VeriTrust

 Detects HTs by identifying redundant inputs for the normal functionality of the output wire.

 First the activation history of the inputs is recorded in SOP and POS form.

 Further analysis of SOPs and POSs yields the redundant inputs.

 FANCI

 Applies Boolean function analysis.

 Flags suspicious wires which have weak input-to-output dependency determined by Control
Value.

12

Extended VeriTrust & FANCI

 DeTrust introduces a new HT design methodology that defeats VeriTrust &
FANCI [CCS’14]

 DeTrust also proposes extensions to VeriTrust & FANCI to detect the new HTs

 Extended VeriTrust (VeriTrustX) & Extended FANCI (FANCIX)

 Key idea: The circuits should be monitored up to multiple sequential stages at a time, while
ignoring any FFs in between.

13

Problem 1: Current schemes can be bypassed by “Sophisticated” Trojans

Problem 2: Current schemes can have infeasibly

High Computational Complexity

Outline

 Hardware Trojans and Problem Statement

 Existing Hardware Trojan Detection Techniques

 Characterization of Hardware Trojans

 Advanced Properties

 HaTCh: Hardware Trojan Catcher

 Algorithm

 Comparisons with other schemes

 Evaluation

 Conclusion

14

Characterization of Hardware Trojans

 A detailed characterization of Hardware Trojans that defines the scope of HaTCh at
the huge landscape of Hardware Trojans.

15

Non-Deterministic

Core & Spec (St-ND)

Hardware
Trojans

Use Standard I/O

Channels (St)

Use Side

Channels (Si)

Deterministic

Core & Spec (St-D)

𝒅,𝜶, 𝒕, 𝒍
𝐻𝐷

Explicit vs. Implicit Malicious Behavior

 Explicit malicious behavior refers to a behavior
of a HT where the HT generated output is
distinguishable from a normal output.

 A = 1, B = 1 Sum = B = 1 ≠ 0

 Implicit malicious behavior refers to a behavior
of a HT where the HT generated output is
indistinguishable from a normal output.

 A = 0, B = 0 Sum = B = 0 = 0

16

Trigger: A=B

Payload: Sum=B when A=B

A
B

Sum

Carry

1

0

B

A

A+B

B

Sel

D Q

D Q

Implicit Malicious behavior can be exploited to

bypass the countermeasure!!!

Properties of Deterministic HTs Group 𝐻𝐷
 Trigger Signal Dimension 𝒅:

Number of Trigger Signal Wires

 E.g. 1 bit trigger signal ′Sel′

 Payload Propagation Delay 𝒕:
Cycles taken to propagate malicious behavior
to the output port after Trigger

 E.g. 1 cycle taken by ′Sum′ after Sel = 1

 Implicit Behavior Factor 𝜶:
Probability of Implicit Malicious Behavior given
that the Trojan is triggered.

 50% for the example Trojan, since
A = B = 0 Sum = B = 0 = 0 and
A = B = 1 Sum = B = 1 ≠ 0

17

Trigger: A=B

Payload: Sum=B when A=B

A
B

Sum

Carry

1

0

B

A

A+B

B

Sel

D Q

D Q

Properties of Deterministic HTs Group 𝐻𝐷
A set 𝑇 of trigger states represents a HT if the HT always passes through one of the
states in 𝑇 in order to express implicit of explicit malicious behavior.

 Trigger Signal Dimension 𝒅(𝑻) of a HT is defined as 𝑑(𝑇) = max
𝑇𝑟𝑖𝑔∈𝑇

|𝑇𝑟𝑖𝑔|

 Payload Propagation Delay 𝒕(𝑻) of a HT represented by a set of trigger states 𝑇
is defined as the maximum number of clock cycles taken to propagate the malicious
behavior after entering a trigger state in 𝑇.

 Implicit Behavior Factor 𝜶(𝑻) of a HT represented by the set of trigger states 𝑇 is
defined as 𝛼(𝑇) = max

𝑇𝑟𝑖𝑔∈𝑇
𝛼(𝑇𝑟𝑖𝑔) where 𝛼(𝑇𝑟𝑖𝑔) shows the probability that,

given the trigger state 𝑇𝑟𝑖𝑔 occurs, it will lead to implicit malicious behavior.

 𝐻𝑑,𝑡,𝛼 is the set of all 𝐻𝐷 type Trojans which can be represented by a set of trigger
states 𝑇 with 𝑑 𝑇 ≤ 𝑑, 𝑡(𝑇) ≤ 𝑡, and 𝛼 𝑇 ≤ 𝛼.

18

19

k-XOR-LFSR Hardware Trojan

• A counter based trojan with the counter implemented
as an LFSR

• Let 𝑟𝑖 ∈ 0, 1 𝑘 denote its register content at clock
cycle 𝑖 represented as a binary vector of length k.

• Suppose that u is the maximum index for which the
linear space L generated by vectors 𝑟0, . . . , 𝑟𝑢−1

(modulo 2) has dimension 𝑘 − 1

• Since dim(𝐿) = 𝑘 − 1 < 𝑘 = dim(0, 1 𝑘), there
exists a vector 𝑣 ∈ 0, 1 𝑘 such that

• 𝑣, 𝑟𝑖 = 0 (modulo 2) for all 0 ≤ 𝑖 ≤ 𝑢 − 1 and

• 𝑣, 𝑟𝑢 = 0 (modulo 2)

• Only the register cells corresponding to 𝑣𝑗 = 1 are

being XORed with inputs 𝐴𝑗 .

rk … … r3 r2 r1LFSR

Feedback Logic

A1

A2

…

Selective Connections

Ak

…

O

20

k-XOR-LFSR Hardware Trojan
• Since the 𝐴𝑗 are all XORed together in the specified logical functionality to

produce the sum 𝑗 𝐴𝑗 the Trojan changes this sum to

𝑗

𝐴𝑗⊕

𝑗:𝑣𝑗=1

𝑟𝑗
𝑖 =

𝑗

𝐴𝑗⊕ 𝑣, 𝑟
𝑖

I.e., the sum remains unchanged until the 𝑢-th clock cycle when it is maliciously

inverted

• Notice that the dimension 𝑑 of this Trojan is independent of the inputs 𝐴𝑗

• Therefore in this sense, the k-XOR-LFSR trojan is universally applicable to

cores that implement an XOR over 𝑘 inputs.

Suppose that all vectors 𝑟𝑖 behave like random vectors from a uniform distribution.

• Then k-XOR-LFSR has register size 𝑘 and triggers after 𝑢 ≈ 𝑘 LFSR transitions

(can be clocked at slow rate).

• Furthermore, if k-XORLFSR is in 𝐻𝑑,𝑡,𝛼 then 𝛼 = 0 and with significant

probability 𝑑 ≥ log 𝑘 − 𝑡 − log(log 𝑘 − 𝑡 log 𝑘).

rk … … r3 r2 r1LFSR

Feedback Logic

A1

A2

…

Selective Connections

Ak

…

O

Outline

 Hardware Trojans and Problem Statement

 Existing Hardware Trojan Detection Techniques

 Characterization of Hardware Trojans

 Advanced Properties

 HaTCh: Hardware Trojan Catcher

 Algorithm

 Comparisons with other schemes

 Evaluation

 Conclusion

21

HaTCh: Hardware Trojan Catcher

Hardware Trojan Catcher (HaTCh) processes an IP Core in two phases;

 Learning Phase puts the core (represented by a netlist) through functional testing and returns a
blacklist B of unused wire combinations.

 If no malicious behavior is observed during the learning phase, then the tagging phase starts

 Otherwise the IP core potentially contains a hardware Trojan and is rejected straightaway

 Tagging Phase adds extra logic for each entry in the blacklist for runtime detection

 Whenever any of the blacklisted wires is activated, an exception is raised to indicate the
activation of a Trojan.

22

HaTCh Algorithm

 Learning Phase

 A simulator is used to produce expected outputs

 An emulator runs actual IP core circuit

 𝑘 independent blacklists are created

 Final blacklist is a union of 𝑘 blacklists

 Tagging Phase

 Additional circuitry is added

 Blacklisted wires are tracked

 Run-time detection

 Complexity

 𝑂
𝜆

log2
1

𝛼

⋅
2𝑛2

𝑑

𝜌/Δ

23

𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐇𝐚𝐓𝐂𝐡 𝐶𝑜𝑟𝑒, 𝑈, 𝑡, 𝑑, 𝛼, 𝜆, 𝜌

𝑘 =
𝜆

log2 1/𝛼
, 𝐵 = 𝜙

𝐟𝐨𝐫 𝐚𝐥𝐥 1 ≤ 𝑖 ≤ 𝑘 𝑑𝑜
𝐵𝑖 ← 𝐿𝐸𝐴𝑅𝑁 𝐶𝑜𝑟𝑒, 𝑈, 𝑡, 𝑑, 𝜌
𝐢𝐟 𝐵𝑖 = Trojan Detected 𝑡ℎ𝑒𝑛
𝑟𝑒𝑡𝑢𝑟𝑛 Trojan Detected
𝐞𝐥𝐬𝐞
𝐵 = 𝐵 ∪ 𝐵𝑖
𝐞𝐧𝐝 𝐢𝐟
𝐞𝐧𝐝 𝐟𝐨𝐫
𝐶𝑜𝑟𝑒𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 = 𝑇𝐴𝐺 𝐶𝑜𝑟𝑒, 𝐵
𝐫𝐞𝐭𝐮𝐫𝐧 𝐶𝑜𝑟𝑒𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑
𝐞𝐧𝐝 𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞

Le
a

rn
in

g
 P

ha
se

Computational Complexity Comparison
 VeriTrust: 𝑂(2𝑚) where 𝑚 indicates the number of inputs of the Trojan circuit.

 FANCI: 𝑂(𝑚2𝑚) where 𝑚 indicates the number of inputs of the Trojan circuit.

 HaTCh: 𝑂(2𝑛2 𝑑) where:
 𝑛 = 2𝑚 − 1 and d = log2 𝑚 + 1 for 2-input implementation

 𝑛 = 𝑚 +
𝑚−1

3
and d = log4𝑚 +1 for 4-input implementation

24

1E+00

1E+09

1E+18

1E+27

1E+36

1E+45

1E+54

1E+63

1E+72

2 4 8 16 32 64 128 256

C
o
m

p
le

x
it
y
 (
ti
m

e
 u

ni
ts

)

of Inputs ‘m’

Computational Complexities of Countermeasures

VeriTrustX

FANCIX

HaTCh_2in

HaTCh_4in

False Positives
 VeriTrust & FANCI Uncontrollable

 HaTCh Controllable, i.e. 𝜌

25

B
la

ck
lis

t
S
iz

e

Inputs tested

Flat for Δ/𝜌

B
la

ck
li
st

 S
iz

e

Inputs tested

Flat for Δ/𝜌

B
la

ck
li
st

 S
iz

e

Inputs tested

Flat for Δ/𝜌

Blacklist 1: 𝐵1 Blacklist 1: 𝐵2 Blacklist k: 𝐵𝑘… …

… …

𝑃 𝐹𝑁 ≤ 𝛼 𝑃 𝐹𝑁 ≤ 𝛼 𝑃 𝐹𝑁 ≤ 𝛼

 Final Blacklist 𝐵 = 𝐵1 ∪ 𝐵2 ∪⋯∪ 𝐵𝑘
 Probability of False Negative 𝑃 𝐹𝑁 ≤ 𝛼𝑘 ≤ 2−𝜆

 False positives rate = 𝜌

Statistical assumptions: (1) With probability at least 0.5 testing

another Δ/𝜌 inputs would not reduce any of the 𝑘 blacklists. (2) States

corresponding to the same test input that are separated by Δ cycles

are statistically independent. (3) The state distribution is statistically

independent of the cycle number at which the state occurs. (4) The

learning phase samples the real input distribution closely.

False Negatives

 VeriTrust & FANCI

 TrustHub 𝐹𝑁𝑅 TrustHub = 0

 Other Hardware Trojans No Characterization

26

 HaTCh
 TrustHub 𝐹𝑁𝑅 TrustHub = 0

 Other Hardware Trojans Controllable,

𝐹𝑁𝑅(Hd,t,𝛼) ≤ 2
−𝜆

 False Negative Rate of a set of Hardware Trojans

 𝐹𝑁𝑅 𝐻 =
1

|𝐻|
 ℎ∈𝐻𝑃𝑟𝑜𝑏(h is not detected when triggered)

VeriTrust

FANCI
HaTCh

TrustHub Benchmarks

Unknown

Characterization

XOR-LFSR

Hardware Trojan Coverage

Outline

 Hardware Trojans and Problem Statement

 Existing Hardware Trojan Detection Techniques

 Characterization of Hardware Trojans

 Advanced Properties

 HaTCh: Hardware Trojan Catcher

 Algorithm

 Comparisons with other schemes

 Evaluation

 Conclusion

27

Evaluation

 We first characterize the benchmarks from TrustHub‡ w.r.t. the Hardware Trojan
characterization introduced in our framework

 Then we evaluate HaTCh for the following benchmarks:

 S-Series Benchmarks from TrustHub: s15850, s35932 and s38417

 RS232 Benchmarks from TrustHub

 New Hardware Trojans presented by DeTrust which defeat FANCI & VeriTrust

 A newly designed XOR-LFSR Hardware Trojan

 HaTCh detects all these Trojans

 The corresponding area overheads for relevant benchmarks are presented next.

28
‡ M. Tehranipoor, R. Karri, F. Koushanfar, and M. Potkonjak, “Trusthub,” http://trusthub.org

Characterization of TrustHub

29

𝑑 = 1

Experimental Results for S-Series

30

2
1

9
6

1
8

7

1
5

5

1
3

9

1
3

4

1
3

3

1
3

2

5
8

6
0

2
1

4

1 1 1 1 1

5
8

8
6

2
2

3

1
5

1
5

1
5

1
5

1
5

5
4

7
4

1
4

6
5

1
2

2
6

1
2

1
9

1
2

1
5

1
2

1
5

1
2

1
5

5
4

7
7

1
3

3
9

1
2

2
6

1
2

1
9

1
2

1
5

1
2

1
5

1
2

1
5

5
5

0
6

1
3

4
3

1
2

3
0

1
2

2
3

1
2

1
9

1
2

1
9

1
2

1
9

0 10 100 1,000 10,000 100,000 200,000

O

F
B

LA
C

K
LI

ST
ED

 W
IR

ES

OF INPUT TEST PATTERNS

HATCH EVALUATION ON S-SERIES BENCHMARKS

s15850-T100 s35932-T200 s35932-T300 s38417-T100 s38417-T200 s38417-T300

Area Overhead for S-Series

31

Area Overhead for RS232

32

 We introduce a thorough characterization and certain advanced properties of
Hardware Trojans which provide crucial information for the development of
detection tools
 The benchmarked Hardware Trojans turn out to be of the simplest kind and must only reflect the tip

of the iceberg

 We propose and implement HaTCh, a powerful hardware detection tool which
 Detects all benchmarked Trigger based deterministic Hardware Trojans

 Detects exponentially large Hardware Trojan classes with negligible probability of a false negative

 Offers sub-exponential computational complexity as opposed to exponential complexity of existing
schemes

 Has low area overhead

Conclusion

33

Thank you!

See http://scl.uconn.edu/research/htdd.php for more details with links to

http://arxiv.org/abs/1605.08413 and https://eprint.iacr.org/2014/943.pdf

http://scl.uconn.edu/research/htdd.php
http://arxiv.org/abs/1605.08413
https://eprint.iacr.org/2014/943.pdf

