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• RSA part of the Slide deck originally based on some 

material by Chenglu during ECE 6095 Spring 2017 on 

Secure Computation and Storage, a precursor to this course

• SHIELD part follows http://eprint.iacr.org/2015/210
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RSA Background
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RSA Background

 RSA: parameters 

 1. Pick two random primes, p and q. Let n = pq. A reasonable key length, i.e., |n|, 
is 2048 bits today. 

 2. Euler's function phi(n) = (p-1)(q-1)

 For all a and n, aphi(n) = 1 mod n 

 Encryption: c = me mod n 

 Decryption: m = cd mod n

 e is public key and d is private key, such that med mod n = m; also the modulus n is 
public but its factorization, and therefore phi(n) is hidden.

 By using phi(n) function and extended Euclidean algorithm, we can easily compute d 
from e. 
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SGX Enclave RSA Signature Verification

 Let m be the public modulus in the enclave author’s RSA key, and s be the enclave 
signature.  Public exponent e is 3,  

 Verifying the RSA signature M = s3 mod m
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SGX RSA signature verification Algorithm
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Avoid division and modulo 

operations. 



Problems of  Plain RSA

 Ciphertexts are multiplicative

 E(a)E(b) = ae be = (ab)e = E(ab)

 RSA is deterministic encryption

 Ciphertexts of the same plaintext are the same.

 Solution for countering malleability and making encryption probabilistic: 

 Padding: take plaintext message bits, add padding bits before and after plaintext. Padding bits 
introduce randomness into encryption.  
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Optimal Asymmetric Encryption Padding
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a.k.a. OAEP

To encode,

1. Message m is padded with k1 zeros to n − k0 bits in length.

2. r is a randomly generated k0-bit string

3. G expands the k0 bits of r to n − k0 bits.

X = m00..0 ⊕ G(r)

4. H reduces the n − k0 bits of X to k0 bits.

Y = r ⊕ H(X)

5. The output is X || Y where X is shown in the diagram as the 

leftmost block and Y as the rightmost block.

To decode,

1. recover the random string as r = Y ⊕ H(X)

2. recover the message as m00..0 = X ⊕ G(r)
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding



RSA implementation

 Key problem: How do we do fast modular exponentiation?

 In general, quadratic complexity (measured in bit operations). 

 Multiplying two 1024-bit number is slow

 Computing the modulus for 1024-bit numbers is slow. (1024-‐bit division). 
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Optimization 1

 How to do modular exponentiation of a large number efficiently? 

 Short answer: split it into two smaller numbers

 Chinese Remainder Theorem:

 First, Compute m1 = cd (mod p), and m2 = cd (mod q).

 Then, Compute m = q cp m1 + p cq m2 mod n

 Where cp = q-1 mod p, cq = p-1 mod q  

 It has 2x speedup.  

 Shorter modular exponentiation in the first step

 Only modular multiplication and addition in second step
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Optimization 2

 How to do modular exponentiation efficiently? 

 Short answer: repeated squaring

 Example: we want to compute a18

 Notice that 18 = 2 x 9 = 2 x (8+1) = 2 x (2 x 2 x 2 +1) relates to 18 = 0b10010

 Do 4 squaring ((((a)2)2)2a)2) = a18
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Optimization 2
 Repeated squaring and Sliding windows
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If we consider more than one consecutive bits in k in each 

iteration, we call it sliding window.

e.g. if kiki+1 = 3, then square twice and multiply with g3

To compute gK



Optimization 3
 How to do modular operation efficiently? 

 Short answer: avoid division, only use multiplication and subtraction

 Montgomery representation: multiply everything by some factor R. 

 a mod q <-> aR mod q 

 b mod q <-> bR mod q 

 c = a*b mod q <-> cR mod q = (aR bR)/R mod q = (aR mod q) (bR mod q) R-1 mod q. 

 Additional division by R should be very cheap

 Next slide explains why R = 2n leads to a cheap solution
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Example of  Montgomery Multiplication

 Let x = 43, y = 56, q = 97, R = 100. You want to compute x * y (mod q). First you 
convert x and y to the Montgomery domain. For x, compute x’ = x * R (mod q) = 43 
* 100 (mod 97) = 32, and for y, compute y’ = y * R (mod q) = 56 * 100 (mod 97) 
= 71.

 Compute a := x’ * y’ = 32 * 71 = 2272.

 In order to zero the first digit, compute a := a + (4q) = 2272 + 388 = 2660.

 In order to zero the second digit, compute a := a + (20q) = 2660 + 1940 = 4600.

 Compute a := a / R = 4600 / 100 = 46. (No extra reduction with needed.)

 We have that 46 is the Montgomery representation of x * y (mod q), that is, x * y * 
R (mod q). In order to convert it back, compute a * (1/R) (mod q) = 46 * 65 (mod 
97) = 80. You can check that 43 * 56 (mod 97) is indeed 80.
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Extra reduction

 R is chosen as the smallest power of 2 larger than q

 One remaining problem: result (aR bR) /R will be < R, but might be > q. 

 Requires subtraction of q. This is called extra reduction. 

 Pr[extra reduction] is approximately equal to (x mod q) / 2R, when we compute xd mod q

 Notice: If extra reduction happens, the computation costs more time. This timing leaks 
information.    
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Optimization 4
 How to do multiplication efficiently? 

 Short answer: select an efficient multiplier on the fly

 Two options: pair-wise multiplier and Karatsuba multiplier

 First, split two 512-bit numbers into 32-bit components.

 Second, select one multiplication from two different multiplications: pair-wise multiplication vs 
Karatsuba multiplication

 Pair-wise: 
 Requires O(nm) time if two numbers have n and m components respectively 

 O(n2) if the two numbers are close

 Karatsuba:
 Requires O(n1.585) time

 In the implementation, the software selects the most efficient multiplication to compute 
according to the values of n and m.
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Notice: selection of multipliers leaks information.

https://en.wikipedia.org/wiki/Karatsuba_algorithm



The big picture of  RSA Decryption
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Timing Attack
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Construction of  attack vectors

 Let q have bit representation q0 q1 .. qn-1, where n = |q| 

 Assume we know some number j+1 high-order bits of q (q0 to qj)

 Construct two approximations of q, guessing qj+1 is either 0 or 1:

 g0 = q0q1…qj 0 0 … 0 0 

 g1 = q0q1…qj 1 0 … 0 0 

 Trigger the decryption g0d and g1d. (Padding is checked after decryption)

 Two cases:

 qj+1 = 0 => g0 < q < g1: time(g0d) and time(g1d) have noticeably difference

 g1 mod q is small because g1 and q have j+1 higher order bits in common

 Less time: fewer extra reductions

 More time: switch from Karatsuba to pair-wise multiplication

 qj+1 = 1 => g0 < g1 < q: time(g0d) and time(g1d) have no much difference

18



Evaluation

19
Zero-one gap (Tg0 – Tg1) for three different keys

Effect of extra 

reduction.

Only bit positions of q where q is 0 are 

shown (in other bit positions q is 1 leading 

to a small gap) 

Effect of multiplier selection



Evaluation
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Zero-one gap (Tg0 – Tg1) for three different keys

What if the two 

effects are 

canceled out?



Neighborhood Size

For every bit of g (g0 or g1) we measure the decryption time for a neighborhood of 
values g; g+1; g+2; …; g+k. We denote this neighborhood size by k.

Adding a small constant does not have much impact on choosing pairwise 
multiplication vs Karatsuba

Adding a small constant does affect the probability of needing one extra reduction on 
top of those needed for g

In this way, several experiments can allow one to guess the correct bit of q
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Effect of  increased neigh. size
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Motivation

• Nowadays, untrusted IC supply chain introduces a variety of security threats. 

• Many countermeasures have been proposed. In general, they are specific for one security 
vulnerability in the supply chain. 
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SHIELD

 SHIELD (Supply Chain Hardware Integrity for 
Electronics Defense) was proposed by DARPA in 
2014. 

 A dielet chip inserted in the host package of a 
legitimate chip, in order to verify the host chip 
remotely.

 Passive sensors detect physical attacks
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SHIELD Protected IC Supply Chain
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Adversarial Models

 Denial of Service (DoS): 

 Single dielet DoS: allowed by DARPA

 Batch mode DoS: needs protection

 Impersonation Attacks (IA):
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DARPA’s Authentication Protocol
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Deterministic 

Encryption!



Try-and-Check Attack
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 Try-and-Check attack is an example of an IA-3 attack: It nullifies the effectiveness 
of DARPA’s authentication protocol in that an adversary does not leave a footprint; 
no adversarial trace can be detected by the verifier.

 1. Apply Challenge C to a legitimate chip with a legitimate dielet inside, and 
receive the response R = (Enc(C) | Enc(SS)) where SS is the sensor status. 

R = (Enc(C) | Enc(SS))



Try-and-Check Attack

 2. Try to separate the dielet from the legitimate chip, and embed it into or glue to a 
counterfeit or malicious chip. This separation process may alter the sensor status SS 
on the dielet. 
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Try-and-Check Attack

 3. Check R = R’ ? If R = R’, it means that sensor status is not altered (SS = SS’). 
Therefore the attackers can conclude that this counterfeit/ malicious chip can be 
authenticated in the supply chain without being detected. 
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R’ = (Enc(C) | Enc(SS’))



How to fix this loophole?

 Use probabilistic encryption instead of deterministic encryption. 

 We suggest AES Counter Mode Encryption as an efficient solution.

 R = Enc(C||Counter) XOR (SS||0…0). 

 Because this incremental counter value is never repeated, the same sensor status SS 
will not generate the same response. This prevents Try-and-Check attack.  

35



Proposed Authentication Protocol
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Security Benefits

 Protection against IA-1, IA-2 and IA-3 attacks. 

 DARPA’s protocol is vulnerable to Try-and-Check attack.

 Increase the difficulty of IA-4 attacks by limiting the number of power traces that 
can be extracted (counter values are incremented up to a maximum).

 Prevent batch mode DoS attack by adding a read-out mode before authentication 
mode. 

 The counter of AES counter mode can also be used as an indicator of suspicious 
offline behavior.
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Performance Benefit

 Reduce the power consumption

 Number of transmitted bits: 258 bits instead of 448 bits.

 Number of encryptions: one encryption instead of two encryptions

 Speed up the protocol execution by halving the number of communication rounds 
with the server.
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Dielet Initialization

 The main threat comes from the untrusted transit between dielet fabrication facilities 
and insertion facilities. 

39Untrusted Transit!



Initialization Protocol
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Benefits

 Due to a one-time initialization and two-phase activation construct in our 
initialization protocol, transits between trusted fabrication and trusted assembly 
facilities can be untrusted.

 On-board TRNG allows dielets to efficiently generate the secret keys and serial IDs 
in parallel (while still on the wafer).
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Conclusion

 We introduce a “try-and-check” attack which nullifies the effectiveness of one of
SHIELD’s main goals of being able to detect and trace adversarial activities with
significant probability.

 We introduce an improved authentication protocol which resists the try-and-check
attack, compared to DARPA’s example authentication protocol.

 We introduce the first concrete initialization protocol.

 The additional area utilization for our authentication and initialization protocols
compared to DARPA’s authentication protocol is only 4% of the allowed area of the
dielet (0.01mm2) in 32nm technology.

 Our findings and rigorous analysis are of utmost importance for the team which
received DARPA’s funding for implementing SHIELD.
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