
CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

RSA Background and Timing Attack
Secure and Efficient Initialization and
Authentication Protocols for SHIELD

Lecture 9a

• RSA part of the Slide deck originally based on some

material by Chenglu during ECE 6095 Spring 2017 on

Secure Computation and Storage, a precursor to this course

• SHIELD part follows http://eprint.iacr.org/2015/210

http://eprint.iacr.org/2015/210

RSA Background

2

RSA Background

 RSA: parameters

 1. Pick two random primes, p and q. Let n = pq. A reasonable key length, i.e., |n|,
is 2048 bits today.

 2. Euler's function phi(n) = (p-1)(q-1)

 For all a and n, aphi(n) = 1 mod n

 Encryption: c = me mod n

 Decryption: m = cd mod n

 e is public key and d is private key, such that med mod n = m; also the modulus n is
public but its factorization, and therefore phi(n) is hidden.

 By using phi(n) function and extended Euclidean algorithm, we can easily compute d
from e.

3

Preneel, Bart and Paar, Christof and Pelzl, Jan. “Understanding cryptography: a textbook for students and practitioners”. Springer 2009

SGX Enclave RSA Signature Verification

 Let m be the public modulus in the enclave author’s RSA key, and s be the enclave
signature. Public exponent e is 3,

 Verifying the RSA signature M = s3 mod m

4

SGX RSA signature verification Algorithm

5

Avoid division and modulo

operations.

Problems of Plain RSA

 Ciphertexts are multiplicative

 E(a)E(b) = ae be = (ab)e = E(ab)

 RSA is deterministic encryption

 Ciphertexts of the same plaintext are the same.

 Solution for countering malleability and making encryption probabilistic:

 Padding: take plaintext message bits, add padding bits before and after plaintext. Padding bits
introduce randomness into encryption.

6

Bellare M, Rogaway P. Optimal asymmetric encryption EUROCRYPT'94

Optimal Asymmetric Encryption Padding

7

a.k.a. OAEP

To encode,

1. Message m is padded with k1 zeros to n − k0 bits in length.

2. r is a randomly generated k0-bit string

3. G expands the k0 bits of r to n − k0 bits.

X = m00..0 ⊕ G(r)

4. H reduces the n − k0 bits of X to k0 bits.

Y = r ⊕ H(X)

5. The output is X || Y where X is shown in the diagram as the

leftmost block and Y as the rightmost block.

To decode,

1. recover the random string as r = Y ⊕ H(X)

2. recover the message as m00..0 = X ⊕ G(r)
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

RSA implementation

 Key problem: How do we do fast modular exponentiation?

 In general, quadratic complexity (measured in bit operations).

 Multiplying two 1024-bit number is slow

 Computing the modulus for 1024-bit numbers is slow. (1024-‐bit division).

8

Optimization 1

 How to do modular exponentiation of a large number efficiently?

 Short answer: split it into two smaller numbers

 Chinese Remainder Theorem:

 First, Compute m1 = cd (mod p), and m2 = cd (mod q).

 Then, Compute m = q cp m1 + p cq m2 mod n

 Where cp = q-1 mod p, cq = p-1 mod q

 It has 2x speedup.

 Shorter modular exponentiation in the first step

 Only modular multiplication and addition in second step

9

Preneel, Bart and Paar, Christof and Pelzl, Jan. “Understanding cryptography: a textbook for students and practitioners”. Springer 2009

Optimization 2

 How to do modular exponentiation efficiently?

 Short answer: repeated squaring

 Example: we want to compute a18

 Notice that 18 = 2 x 9 = 2 x (8+1) = 2 x (2 x 2 x 2 +1) relates to 18 = 0b10010

 Do 4 squaring ((((a)2)2)2a)2) = a18

10

Optimization 2
 Repeated squaring and Sliding windows

11

If we consider more than one consecutive bits in k in each

iteration, we call it sliding window.

e.g. if kiki+1 = 3, then square twice and multiply with g3

To compute gK

Optimization 3
 How to do modular operation efficiently?

 Short answer: avoid division, only use multiplication and subtraction

 Montgomery representation: multiply everything by some factor R.

 a mod q <-> aR mod q

 b mod q <-> bR mod q

 c = a*b mod q <-> cR mod q = (aR bR)/R mod q = (aR mod q) (bR mod q) R-1 mod q.

 Additional division by R should be very cheap

 Next slide explains why R = 2n leads to a cheap solution

12

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

Example of Montgomery Multiplication

 Let x = 43, y = 56, q = 97, R = 100. You want to compute x * y (mod q). First you
convert x and y to the Montgomery domain. For x, compute x’ = x * R (mod q) = 43
* 100 (mod 97) = 32, and for y, compute y’ = y * R (mod q) = 56 * 100 (mod 97)
= 71.

 Compute a := x’ * y’ = 32 * 71 = 2272.

 In order to zero the first digit, compute a := a + (4q) = 2272 + 388 = 2660.

 In order to zero the second digit, compute a := a + (20q) = 2660 + 1940 = 4600.

 Compute a := a / R = 4600 / 100 = 46. (No extra reduction with needed.)

 We have that 46 is the Montgomery representation of x * y (mod q), that is, x * y *
R (mod q). In order to convert it back, compute a * (1/R) (mod q) = 46 * 65 (mod
97) = 80. You can check that 43 * 56 (mod 97) is indeed 80.

13

https://alicebob.cryptoland.net/understanding-the-montgomery-reduction-algorithm/

Extra reduction

 R is chosen as the smallest power of 2 larger than q

 One remaining problem: result (aR bR) /R will be < R, but might be > q.

 Requires subtraction of q. This is called extra reduction.

 Pr[extra reduction] is approximately equal to (x mod q) / 2R, when we compute xd mod q

 Notice: If extra reduction happens, the computation costs more time. This timing leaks
information.

14

Optimization 4
 How to do multiplication efficiently?

 Short answer: select an efficient multiplier on the fly

 Two options: pair-wise multiplier and Karatsuba multiplier

 First, split two 512-bit numbers into 32-bit components.

 Second, select one multiplication from two different multiplications: pair-wise multiplication vs
Karatsuba multiplication

 Pair-wise:
 Requires O(nm) time if two numbers have n and m components respectively

 O(n2) if the two numbers are close

 Karatsuba:
 Requires O(n1.585) time

 In the implementation, the software selects the most efficient multiplication to compute
according to the values of n and m.

15

Notice: selection of multipliers leaks information.

https://en.wikipedia.org/wiki/Karatsuba_algorithm

The big picture of RSA Decryption

16

Timing Attack

17

Construction of attack vectors

 Let q have bit representation q0 q1 .. qn-1, where n = |q|

 Assume we know some number j+1 high-order bits of q (q0 to qj)

 Construct two approximations of q, guessing qj+1 is either 0 or 1:

 g0 = q0q1…qj 0 0 … 0 0

 g1 = q0q1…qj 1 0 … 0 0

 Trigger the decryption g0d and g1d. (Padding is checked after decryption)

 Two cases:

 qj+1 = 0 => g0 < q < g1: time(g0d) and time(g1d) have noticeably difference

 g1 mod q is small because g1 and q have j+1 higher order bits in common

 Less time: fewer extra reductions

 More time: switch from Karatsuba to pair-wise multiplication

 qj+1 = 1 => g0 < g1 < q: time(g0d) and time(g1d) have no much difference

18

Evaluation

19
Zero-one gap (Tg0 – Tg1) for three different keys

Effect of extra

reduction.

Only bit positions of q where q is 0 are

shown (in other bit positions q is 1 leading

to a small gap)

Effect of multiplier selection

Evaluation

20
Zero-one gap (Tg0 – Tg1) for three different keys

What if the two

effects are

canceled out?

Neighborhood Size

For every bit of g (g0 or g1) we measure the decryption time for a neighborhood of
values g; g+1; g+2; …; g+k. We denote this neighborhood size by k.

Adding a small constant does not have much impact on choosing pairwise
multiplication vs Karatsuba

Adding a small constant does affect the probability of needing one extra reduction on
top of those needed for g

In this way, several experiments can allow one to guess the correct bit of q

21

Effect of increased neigh. size

22

References [1]
1. Paul Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems”. Crypto’96

2. Daniel J. Bernstein. “Cache-timing attacks on AES”. 2005

3. Paul Kocher, Joshua Jaffe and Benjamin Jun. ”Differential Power Analysis”. Crypto’99

4. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electromagnetic Analysis: Concrete Results”. CHES’01

5. Daniel Genkin, Adi Shamir and Eran Tromer. “RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis”.
CRYPTO’14

6. Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic and Jean-Pierre Seifert. “Simple
Photonic Emission Analysis of AES Photonic Side Channel Analysis for the Rest of Us”. CHES’12

7. David Brumleya and Dan Boneh, “Remote timing attacks are practical”. Computer Networks’05.

8. Preneel, Bart and Paar, Christof and Pelzl, Jan. “Understanding cryptography: a textbook for students and
practitioners”. Springer 2009

9. Bellare M, Rogaway P. Optimal asymmetric encryption EUROCRYPT'94

10. https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

23

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

References [2]

11. https://en.wikipedia.org/wiki/Montgomery_modular_multiplication

12. https://en.wikipedia.org/wiki/Karatsuba_algorithm

13. https://github.com/stoutbeard/crypto

24

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://github.com/stoutbeard/crypto

Secure and Efficient Initialization and
Authentication Protocols for SHIELD

By Chenglu Jin & Marten van Dijk

25

Outline

 Motivation

 SHIELD

 Adversarial Models

 DARPA’s Authentication Protocol

 Try-and-Check Attack

 Proposed Authentication Protocol

 Security Properties and Performance Improvements

 Initialization Protocol

 Conclusion

26

Motivation

• Nowadays, untrusted IC supply chain introduces a variety of security threats.

• Many countermeasures have been proposed. In general, they are specific for one security
vulnerability in the supply chain.

27

SHIELD

 SHIELD (Supply Chain Hardware Integrity for
Electronics Defense) was proposed by DARPA in
2014.

 A dielet chip inserted in the host package of a
legitimate chip, in order to verify the host chip
remotely.

 Passive sensors detect physical attacks

28

SHIELD Protected IC Supply Chain

29

Adversarial Models

 Denial of Service (DoS):

 Single dielet DoS: allowed by DARPA

 Batch mode DoS: needs protection

 Impersonation Attacks (IA):

30

DARPA’s Authentication Protocol

31

Deterministic

Encryption!

Try-and-Check Attack

32

 Try-and-Check attack is an example of an IA-3 attack: It nullifies the effectiveness
of DARPA’s authentication protocol in that an adversary does not leave a footprint;
no adversarial trace can be detected by the verifier.

 1. Apply Challenge C to a legitimate chip with a legitimate dielet inside, and
receive the response R = (Enc(C) | Enc(SS)) where SS is the sensor status.

R = (Enc(C) | Enc(SS))

Try-and-Check Attack

 2. Try to separate the dielet from the legitimate chip, and embed it into or glue to a
counterfeit or malicious chip. This separation process may alter the sensor status SS
on the dielet.

33

Try-and-Check Attack

 3. Check R = R’ ? If R = R’, it means that sensor status is not altered (SS = SS’).
Therefore the attackers can conclude that this counterfeit/ malicious chip can be
authenticated in the supply chain without being detected.

34

R’ = (Enc(C) | Enc(SS’))

How to fix this loophole?

 Use probabilistic encryption instead of deterministic encryption.

 We suggest AES Counter Mode Encryption as an efficient solution.

 R = Enc(C||Counter) XOR (SS||0…0).

 Because this incremental counter value is never repeated, the same sensor status SS
will not generate the same response. This prevents Try-and-Check attack.

35

Proposed Authentication Protocol

36

Security Benefits

 Protection against IA-1, IA-2 and IA-3 attacks.

 DARPA’s protocol is vulnerable to Try-and-Check attack.

 Increase the difficulty of IA-4 attacks by limiting the number of power traces that
can be extracted (counter values are incremented up to a maximum).

 Prevent batch mode DoS attack by adding a read-out mode before authentication
mode.

 The counter of AES counter mode can also be used as an indicator of suspicious
offline behavior.

37

Performance Benefit

 Reduce the power consumption

 Number of transmitted bits: 258 bits instead of 448 bits.

 Number of encryptions: one encryption instead of two encryptions

 Speed up the protocol execution by halving the number of communication rounds
with the server.

38

Dielet Initialization

 The main threat comes from the untrusted transit between dielet fabrication facilities
and insertion facilities.

39Untrusted Transit!

Initialization Protocol

40

Benefits

 Due to a one-time initialization and two-phase activation construct in our
initialization protocol, transits between trusted fabrication and trusted assembly
facilities can be untrusted.

 On-board TRNG allows dielets to efficiently generate the secret keys and serial IDs
in parallel (while still on the wafer).

41

Conclusion

 We introduce a “try-and-check” attack which nullifies the effectiveness of one of
SHIELD’s main goals of being able to detect and trace adversarial activities with
significant probability.

 We introduce an improved authentication protocol which resists the try-and-check
attack, compared to DARPA’s example authentication protocol.

 We introduce the first concrete initialization protocol.

 The additional area utilization for our authentication and initialization protocols
compared to DARPA’s authentication protocol is only 4% of the allowed area of the
dielet (0.01mm2) in 32nm technology.

 Our findings and rigorous analysis are of utmost importance for the team which
received DARPA’s funding for implementing SHIELD.

42ePrint available at: http://eprint.iacr.org/2015/210

http://eprint.iacr.org/2015/210

