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Context: Cloud Computing

 User sends his/her sensitive data to the cloud, trusting it to correctly do the 
computation and also not expose user sensitive data to anyone.

 Example: search engine, medical/patent database 

 Cloud software is buggy and potentially malicious

𝑥, 𝑃

𝑃(𝑥)



Threat Model

 The cloud itself is malicious

 Server can expose x to the world

 Server promises to run P on x but can run any program of its choosing (in addition)

 Server can monitor I/O channels of processor

𝑥, 𝑃

𝑃(𝑥)



Outline

 Motivation

 Possible Solutions

 Fully Homomorphic Encryption

 Tamper Resistant Hardware

 Ascend Processor

 Streaming applications



How to meet security requirement?

 Cryptographic solution

 Fully Homomorphic Encryption (FHE)

 Hardware solution

 Tamper Resistant Hardware



FHE (Fully Homomorphic Encryption)

 Limitation of FHE

 The most efficient FHE scheme so far incurs 109x performance overhead for 
streamline code 

 Control flow in the program (branch, loop, etc.) may potentially incur orders of 
magnitude additional overhead.

 FHE is far from being practical.

Enc(x), P

Enc( P(x) )



Tamper Resistant Hardware

 Tamper resistant hardware

 The secure processor is trusted, shares secret key with client.

 Private information stored in the hardware is not accessible 
through external means.

 examples: IBM 4758, XOM, Aegis, NGSCB, TrustZone, TPM, 
TPM + SVM, TPM + TXT, SecureBlue++, SGX



Tamper Resistant Hardware

 Limitations

 Just trusting the tamper resistance of the chip is not enough!

 I/O channels of the secure processor can be monitored by software and leak 
information 

 Examples: address channel, I/O timing channel

Main 

Memory



Leakage through Address Channel

 The value of x is leaked through the access pattern

 Sensitive data might be exposed by observing the addresses [HIDE, 
NDSS12]

Address sequence: 0x00, 0x01, 0x02

Address sequence: 0x00, 0x00, 0x00

for i = 1 to N
if (x == 0)

sum += A[i]
else

sum += A[0]



Leakage through Timing Channel

 The value of x is leaked by observing whether the memory access 
happens or not.

 Malicious software on a secure processor can easily leak sensitive data 
through chip pins

No memory access

memory access

for i = 1 to N
if (x == 0)

do nothing
else

access memory



Outline

Motivation

 Possible Solutions

Ascend Processor

 Two-interactive protocol

 Path Oblivious RAM

 Periodic Access

 Path ORAM integrity

 Streaming Applications



 An adversary cannot learn a user’s private information 
by observing the pin traffic of Ascend. 

 Implies both address channel and timing channel should 
be protected as well.

Main 

Memory

Ascend Security Goal



Ascend: Custom Processor for Secure Computation 
on Encrypted Data

Adversarial Model:

- Adversary with full physical access to the data bus

- HW TCB = CPU chip (with caches, mem. interface), Package

- SW TCB = Application processes, Trusted OS

- Not trusted: External storage, in particular, DRAM.

Leakage LLC-DRAM boundary:

- Data blocks  AES

- Timing channel of reads/writes  Periodic access

- Address access pattern of reads/writes  Path ORAM

Leakage Input/Output:

- Private user input  PKI

- Streaming in server data  Fixed I/O scheduler / AES

- Termination channel  T leaks  bits

Authenticity/Freshness of DRAM  Merkle Tree

Provide Isolated Computation based on Trusted HW for 

Certified Program Execution



Sanctum: Commodity Architecture for Secure 
Computation 

Sanctum:

- Small set of changes to an existing architecture  All doable in FPGA

- Modified commodity software stack (hypervisor friendly)

- Permits security monitor SW to be replaced

- Application on a standard OS can create coexisting Secure Enclaves (ala SGX) for Isolated 

Computation with Remote Attestation

- No Data Encryption, Memory Integrity Checking, or ORAM needed

- Long lived enclaves with demand paging require page-level ORAM

Our	secure	containers	are	called	enclaves,	and	they	are conceptually	extensions	of	
application	processes.
Enclaves	run	at	the	lowest	possible	privilege	level -- this	is	known	as	ring	3	in	x86,	or
user	mode	anywhere	else.	This	means	enclaves	cannot	compromise	the	host	
computer’s	OS	or	hypervisor.	So	we	don’t	need	to	worry	about	restricting	enclaves	–
the	same	mechanisms	used	to	police	user	processes	will	work	for	enclaves.
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Sanctum RISCV prototype

Sanctum Software Stack

Adversarial Model: 

- Adversary can only launch remote SW attacks

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a trusted MCU (as in Intel SGX)

- Sanctum forbids access by untrusted OS to reserved DRAM for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv. level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing channel attacks using locality 

preserving cache-coloring)

- Allows untrusted OS



Correctness: 

a valid RAM

Security: 

for A and A’, 

if |A| = |A’|), then 

ORAM(A) ~ ORAM(A’)

Oblivious RAM (ORAM)

limited storage, trusted

Client Server

Request Sequence A:

Read(a1), 

Write(a2, d’), 

…

Obfuscated sequence

ORAM(A) seen by the server

ample storage, untrusted



Oblivious RAM
 Oblivious RAM (ORAM) [1]

 ORAM allows a client to conceal its access pattern to the remote storage by 
continuously shuffling and re-encrypting data as they are accessed.

 Any two access sequences of same length are computationally indistinguishable.

 ORAM does not protect timing channel, i.e., when addresses are made can still leak 
information.

[1] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious 

rams. J. ACM, 1996. 



Correctness: 

a valid RAM

Security: 

for A and A’, 

if |A| = |A’|, then 

ORAM(A) ~ ORAM(A’)

Oblivious RAM (ORAM)

Request Sequence A:

Read(a1), 

Write(a2, d’), 

…

Obfuscated sequence

ORAM(A) seen by the server

Client
ORAM

Algorithm

Untrusted 

storage

A ORAM(A)ORAM

Interface

Untrusted

Disk
Compute 

Node

Client
ORAM

Algorithm

Untrusted 

storage

A ORAM(A)ORAM

Controller

External 

DRAM
Secure 

Processor

Client
ORAM

Algorithm

Untrusted 

storage

A ORAM(A)ORAM

Algorithm

Untrusted 

Storage
Client



Naïve Oblivious RAM
 Naïve ORAM

 Each access touches all the N data blocks in main memory

 Blocks are read, re-encrypted using probabilistic encryption and written back

 Dummy blocks are filled to obfuscate memory footprint.

 O(N) overhead – unacceptable



Path ORAM

 Efficient and simple

 External DRAM structured as a binary 
tree

on-chip

off-chip

Trusted Coprocessor

ORAM Interface

L 
le

ve
ls

Path ORAM
Binary Tree

0 1 2 3Leafs



Path ORAM

 Position Map: map each block to a 
random path

 Invariant: if a block is mapped to a path, 
it must be on that path or in the stash

 Stash: temporarily holds some blocks

off-chip

L 
le

ve
ls

Path ORAM
Binary Tree

0 1 2 3Leafs

on-chipTrusted Coprocessor

ORAM Interface

Stash
Position 

Map



Path ORAM Example

Load Block A

1) Lookup position map

s = PosMap(A)

2) Load the path into stash

3) Return data block A to processor

4) Remap A to a random leaf

PosMap(A) = rand()

5) Write back the path

on-chipTrusted Coprocessor

off-chipPath ORAM

0 1 2 3Leafs

ORAM Interface

Stash
Position 

Map

address A

leaf 0

A



Path ORAM Example

Load Block A

1) Lookup position map

s = PosMap(A)

2) Load the path into stash

3) Return data block A to processor

4) Remap A to a random leaf

PosMap(A) = rand()

5) Write back the path

on-chipTrusted Coprocessor

off-chipPath ORAM

0 1 2 3Leafs

ORAM Interface

Stash
Position 

Map

address A

A,2A,2



Path ORAM Example

Load Block A

1) Lookup position map

s = PosMap(A)

2) Load the path into stash

3) Return data block A to processor

4) Remap A to a random leaf

PosMap(A) = rand()

5) Write back the path

on-chipTrusted Coprocessor

off-chipPath ORAM

0 1 2 3Leafs

ORAM Interface

Stash

A,2
Position 

Map

address A



Path Oblivious RAM

 Path ORAM*

 Each access only touches O(log N) data blocks.

 The most practical ORAM scheme known to date

 For blocks size bigger than ω(log2 N), Path ORAM is asymptotically better than the 
best known ORAM scheme with small client storage.

* Path ORAM: An Extremely Simple Oblivious RAM Protocol, Emil 

Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, 

Xiangyao Yu, Srinivas Devadas, CCS 2013. 



Optimizing ORAM

 Need Recursive ORAM for storing the Position Map:

 Position map Lookup Buffer (PLB) caches recent position map blocks

 Unified ORAM uses one tree to store the Recursive ORAM

 C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas, “Freecursive ORAM: [Nearly] Free Recursion and 
Integrity Verification for Position-based Oblivious RAM,” ASPLOS 2015

 C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, D. Serpanos, and S. Devadas, “A Low-Latency, Low-
Area Hardware Oblivious RAM Controller,” FCCM 2015

 Prefetcher: 

 X. Yu, S. K. Haider, L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. Devadas, “PrORAM: Dynamic Prefetcher
for Oblivious RAM,” ISCA 2015



Ring ORAM

 Make evictions more efficient:

 Reverse lexicographic order: 

 better load balancing

 allows 1 eviction per A accesses

 Read only 1 block per node

 Add Y reserved dummy slots, and permute the blocks in nodes

 Block of interest or a fresh dummy

 Re-permute if out of fresh dummies

 Best bandwidth (without server computation)

 Ring ORAM: L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas, “Constants Count: 
Practical Improvements to Oblivious RAM,” USENIX Security 2015



Other Adversarial Models

 Write-only ORAM: A new “Flat ORAM” (under submission) with optimizations from previous 
slides gives 1.5-3X performance penalty

 A weaker adversarial model – remote SW attacks -- realistic for datacenter infrastructures:

 Sanctum

 No ORAM needed

 Demand paging for long running enclaves needs page-level ORAM (in enclave SW)

 If the adversary is able to physically tap the memory bus (as in Ascend), then we need the full cacheline level 
ORAM (as in Ascend) 

 with an associated 3-10X performance penalty



Flat ORAM
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Flat ORAM
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Flat ORAM
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Onion ORAM: Oblivious Access to Cloud Storage

 Onion ORAM assumes server computation:

 Achieves O(1) bandwidth: Reads one block per path

 Uses PIR to execute both block requests and block evictions

 PIR based an Additive Homomorphic Encryption

 Selects  𝑌𝑖 ∈ 𝑌1, 𝑌2, … 𝑌𝑚 without revealing 𝑖

 User sends 𝐸 𝑥1 , 𝐸 𝑥2 , … , 𝐸 𝑥𝑚 where 𝑥𝑖 = 1 and other 𝑥𝑗 = 0

 Server evaluates   𝑌1⨂𝐸 𝑥1 ⨁ 𝑌2⨂𝐸 𝑥2 ⨁…⨁ 𝑌𝑚⨂𝐸 𝑥𝑚

= 𝐸 𝑌1𝑥1 + 𝑌2𝑥2 +⋯+ 𝑌𝑚𝑥𝑚 = 𝐸(𝑌𝑖)

 Adds a layer of encryption during eviction (like onion rings)

 each block moves at least one level down

 leaf blocks are refreshed by the user 



Onion ORAM: Oblivious Access to Cloud Storage

 O(1) bandwidth blowup

 Moderate server computation

 Big block size

 Secure and correct in the malicious setting

 S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs, “Onion ORAM: 
A Constant Bandwidth Blowup RAM,” TCC 2016



Timing Channel Protection

 Access ORAM at a fixed rate.

 Issue a dummy access when an ORAM access should be made but 
there is no real request

Notation: ORAM interval (Oint)

 Make an ORAM access Oint cycles after the previous one returns



Data Integrity

 So far, we have been assuming server just watches traffic and runs arbitrary 
software.

 What if the server modifies the user’s data in the ORAM?

 Data Integrity in ORAM is required.* 

 Data integrity refers to maintaining and assuring the accuracy and consistency of data over its entire 
life-cycle.

* Integrity Verification for Path Oblivious-RAM, Ling Ren, Christopher W. Fletcher, Xiangyao 

Yu, Marten van Dijk and Srinivas Devadas, HPEC 2013. 

17% latency overhead on top of recursive Path ORAM



Outline
 Motivation

 Challenges and Solutions

 Ascend Processor

 Stream applications

 Limitation of Ascend in Batch mode

 Secure Interaction with Ascend



Limitation of  Ascend
 Batch computation model 

 The channel between the user and Ascend is only used at beginning and end of 
computation.

 No interaction during computation

 User input/output, network, disk, etc.

Network

Disk

Oblivious

RAM



Secure Interaction with Ascend

 Intuition

 As long as the I/O of Ascend does not depend on private data, no sensitive information is leaked. 

 The server does not know any private data. If the server completely controls Ascend’s I/O behavior, 
no sensitive information is leaked.



Streaming Applications

 Document Matching

 DNA Sequence Matching

 Content-Based Image Retrieval (CBIR)

 In all these applications, client has an encrypted document/gene sequence/image 
that has to be matched privately with a large public data set that is streamed in



Evaluation

Applications Oracle-Ascend Stream-Ascend

Document Matching < 0.1% 24.5%

DNA Sequence Matching < 0.1% 0.7%

Content-Based Image Retrieval 2.6% 3.9%

• Hardware Platform

– Oracle-Ascend: No overhead in input thread

– Oracle-Baseline: Oracle-Ascend with DRAM as the main 

memory

– Stream-Ascend: choose streaming interval carefully

• Small performance overhead because data records 

fit in cache, and ORAM is rarely accessed.



The Full Picture
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