
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Ascend: Architecture for Secure Computation on Encrypted Data
Oblivious RAM (ORAM)

Lecture 7b

Context: Cloud Computing

 User sends his/her sensitive data to the cloud, trusting it to correctly do the
computation and also not expose user sensitive data to anyone.

 Example: search engine, medical/patent database

 Cloud software is buggy and potentially malicious

𝑥, 𝑃

𝑃(𝑥)

Threat Model

 The cloud itself is malicious

 Server can expose x to the world

 Server promises to run P on x but can run any program of its choosing (in addition)

 Server can monitor I/O channels of processor

𝑥, 𝑃

𝑃(𝑥)

Outline

 Motivation

 Possible Solutions

 Fully Homomorphic Encryption

 Tamper Resistant Hardware

 Ascend Processor

 Streaming applications

How to meet security requirement?

 Cryptographic solution

 Fully Homomorphic Encryption (FHE)

 Hardware solution

 Tamper Resistant Hardware

FHE (Fully Homomorphic Encryption)

 Limitation of FHE

 The most efficient FHE scheme so far incurs 109x performance overhead for
streamline code

 Control flow in the program (branch, loop, etc.) may potentially incur orders of
magnitude additional overhead.

 FHE is far from being practical.

Enc(x), P

Enc(P(x))

Tamper Resistant Hardware

 Tamper resistant hardware

 The secure processor is trusted, shares secret key with client.

 Private information stored in the hardware is not accessible
through external means.

 examples: IBM 4758, XOM, Aegis, NGSCB, TrustZone, TPM,
TPM + SVM, TPM + TXT, SecureBlue++, SGX

Tamper Resistant Hardware

 Limitations

 Just trusting the tamper resistance of the chip is not enough!

 I/O channels of the secure processor can be monitored by software and leak
information

 Examples: address channel, I/O timing channel

Main

Memory

Leakage through Address Channel

 The value of x is leaked through the access pattern

 Sensitive data might be exposed by observing the addresses [HIDE,
NDSS12]

Address sequence: 0x00, 0x01, 0x02

Address sequence: 0x00, 0x00, 0x00

for i = 1 to N
if (x == 0)

sum += A[i]
else

sum += A[0]

Leakage through Timing Channel

 The value of x is leaked by observing whether the memory access
happens or not.

 Malicious software on a secure processor can easily leak sensitive data
through chip pins

No memory access

memory access

for i = 1 to N
if (x == 0)

do nothing
else

access memory

Outline

Motivation

 Possible Solutions

Ascend Processor

 Two-interactive protocol

 Path Oblivious RAM

 Periodic Access

 Path ORAM integrity

 Streaming Applications

 An adversary cannot learn a user’s private information
by observing the pin traffic of Ascend.

 Implies both address channel and timing channel should
be protected as well.

Main

Memory

Ascend Security Goal

Ascend: Custom Processor for Secure Computation
on Encrypted Data

Adversarial Model:

- Adversary with full physical access to the data bus

- HW TCB = CPU chip (with caches, mem. interface), Package

- SW TCB = Application processes, Trusted OS

- Not trusted: External storage, in particular, DRAM.

Leakage LLC-DRAM boundary:

- Data blocks  AES

- Timing channel of reads/writes  Periodic access

- Address access pattern of reads/writes  Path ORAM

Leakage Input/Output:

- Private user input  PKI

- Streaming in server data  Fixed I/O scheduler / AES

- Termination channel  T leaks bits

Authenticity/Freshness of DRAM  Merkle Tree

Provide Isolated Computation based on Trusted HW for

Certified Program Execution

Sanctum: Commodity Architecture for Secure
Computation

Sanctum:

- Small set of changes to an existing architecture  All doable in FPGA

- Modified commodity software stack (hypervisor friendly)

- Permits security monitor SW to be replaced

- Application on a standard OS can create coexisting Secure Enclaves (ala SGX) for Isolated

Computation with Remote Attestation

- No Data Encryption, Memory Integrity Checking, or ORAM needed

- Long lived enclaves with demand paging require page-level ORAM

Our	secure	containers	are	called	enclaves,	and	they	are conceptually	extensions	of	
application	processes.
Enclaves	run	at	the	lowest	possible	privilege	level -- this	is	known	as	ring	3	in	x86,	or
user	mode	anywhere	else.	This	means	enclaves	cannot	compromise	the	host	
computer’s	OS	or	hypervisor.	So	we	don’t	need	to	worry	about	restricting	enclaves	–
the	same	mechanisms	used	to	police	user	processes	will	work	for	enclaves.

13

Sanctum RISCV prototype

Sanctum Software Stack

Adversarial Model:

- Adversary can only launch remote SW attacks

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a trusted MCU (as in Intel SGX)

- Sanctum forbids access by untrusted OS to reserved DRAM for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv. level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing channel attacks using locality

preserving cache-coloring)

- Allows untrusted OS

Correctness:

a valid RAM

Security:

for A and A’,

if |A| = |A’|), then

ORAM(A) ~ ORAM(A’)

Oblivious RAM (ORAM)

limited storage, trusted

Client Server

Request Sequence A:

Read(a1),

Write(a2, d’),

…

Obfuscated sequence

ORAM(A) seen by the server

ample storage, untrusted

Oblivious RAM
 Oblivious RAM (ORAM) [1]

 ORAM allows a client to conceal its access pattern to the remote storage by
continuously shuffling and re-encrypting data as they are accessed.

 Any two access sequences of same length are computationally indistinguishable.

 ORAM does not protect timing channel, i.e., when addresses are made can still leak
information.

[1] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

rams. J. ACM, 1996.

Correctness:

a valid RAM

Security:

for A and A’,

if |A| = |A’|, then

ORAM(A) ~ ORAM(A’)

Oblivious RAM (ORAM)

Request Sequence A:

Read(a1),

Write(a2, d’),

…

Obfuscated sequence

ORAM(A) seen by the server

Client
ORAM

Algorithm

Untrusted

storage

A ORAM(A)ORAM

Interface

Untrusted

Disk
Compute

Node

Client
ORAM

Algorithm

Untrusted

storage

A ORAM(A)ORAM

Controller

External

DRAM
Secure

Processor

Client
ORAM

Algorithm

Untrusted

storage

A ORAM(A)ORAM

Algorithm

Untrusted

Storage
Client

Naïve Oblivious RAM
 Naïve ORAM

 Each access touches all the N data blocks in main memory

 Blocks are read, re-encrypted using probabilistic encryption and written back

 Dummy blocks are filled to obfuscate memory footprint.

 O(N) overhead – unacceptable

Path ORAM

 Efficient and simple

 External DRAM structured as a binary
tree

on-chip

off-chip

Trusted Coprocessor

ORAM Interface

L
le

ve
ls

Path ORAM
Binary Tree

0 1 2 3Leafs

Path ORAM

 Position Map: map each block to a
random path

 Invariant: if a block is mapped to a path,
it must be on that path or in the stash

 Stash: temporarily holds some blocks

off-chip

L
le

ve
ls

Path ORAM
Binary Tree

0 1 2 3Leafs

on-chipTrusted Coprocessor

ORAM Interface

Stash
Position

Map

Path ORAM Example

Load Block A

1) Lookup position map

s = PosMap(A)

2) Load the path into stash

3) Return data block A to processor

4) Remap A to a random leaf

PosMap(A) = rand()

5) Write back the path

on-chipTrusted Coprocessor

off-chipPath ORAM

0 1 2 3Leafs

ORAM Interface

Stash
Position

Map

address A

leaf 0

A

Path ORAM Example

Load Block A

1) Lookup position map

s = PosMap(A)

2) Load the path into stash

3) Return data block A to processor

4) Remap A to a random leaf

PosMap(A) = rand()

5) Write back the path

on-chipTrusted Coprocessor

off-chipPath ORAM

0 1 2 3Leafs

ORAM Interface

Stash
Position

Map

address A

A,2A,2

Path ORAM Example

Load Block A

1) Lookup position map

s = PosMap(A)

2) Load the path into stash

3) Return data block A to processor

4) Remap A to a random leaf

PosMap(A) = rand()

5) Write back the path

on-chipTrusted Coprocessor

off-chipPath ORAM

0 1 2 3Leafs

ORAM Interface

Stash

A,2
Position

Map

address A

Path Oblivious RAM

 Path ORAM*

 Each access only touches O(log N) data blocks.

 The most practical ORAM scheme known to date

 For blocks size bigger than ω(log2 N), Path ORAM is asymptotically better than the
best known ORAM scheme with small client storage.

* Path ORAM: An Extremely Simple Oblivious RAM Protocol, Emil

Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, Srinivas Devadas, CCS 2013.

Optimizing ORAM

 Need Recursive ORAM for storing the Position Map:

 Position map Lookup Buffer (PLB) caches recent position map blocks

 Unified ORAM uses one tree to store the Recursive ORAM

 C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas, “Freecursive ORAM: [Nearly] Free Recursion and
Integrity Verification for Position-based Oblivious RAM,” ASPLOS 2015

 C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, D. Serpanos, and S. Devadas, “A Low-Latency, Low-
Area Hardware Oblivious RAM Controller,” FCCM 2015

 Prefetcher:

 X. Yu, S. K. Haider, L. Ren, C. W. Fletcher, A. Kwon, M. van Dijk, and S. Devadas, “PrORAM: Dynamic Prefetcher
for Oblivious RAM,” ISCA 2015

Ring ORAM

 Make evictions more efficient:

 Reverse lexicographic order:

 better load balancing

 allows 1 eviction per A accesses

 Read only 1 block per node

 Add Y reserved dummy slots, and permute the blocks in nodes

 Block of interest or a fresh dummy

 Re-permute if out of fresh dummies

 Best bandwidth (without server computation)

 Ring ORAM: L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas, “Constants Count:
Practical Improvements to Oblivious RAM,” USENIX Security 2015

Other Adversarial Models

 Write-only ORAM: A new “Flat ORAM” (under submission) with optimizations from previous
slides gives 1.5-3X performance penalty

 A weaker adversarial model – remote SW attacks -- realistic for datacenter infrastructures:

 Sanctum

 No ORAM needed

 Demand paging for long running enclaves needs page-level ORAM (in enclave SW)

 If the adversary is able to physically tap the memory bus (as in Ascend), then we need the full cacheline level
ORAM (as in Ascend)

 with an associated 3-10X performance penalty

Flat ORAM

28

Position MapStash

1

Data ORAM Controller

Program Address ‘a’

Get Leaf s=5

3

Return Data

4

Tr
us

te
d

 D
o
m

a
in

(O
n

C
hi

p
)

0 1 2 3 4 5 6 7Leaf

Write Path

5

U
nt

ru
st

e
d

 D
o
m

a
in

(E
x
te

rn
a

l
D

R
A

M
)

2

Read Path

Remap

Flat ORAM

29

Position MapStash
1

ORAM Controller

Program Address ‘a’

Get Index 𝑠 = 5

3

Return Data

4

Tr
us

te
d

 D
o
m

a
in

 (
O

n
C

hi
p

)

Write Block 5

U
nt

ru
st

e
d

 D
o
m

a
in

(E

x
te

rn
a

l
D

R
A

M
)

2

Read Block
Remap

Index 0 1 2 3 4 5 6 7

Flat ORAM

30

On-Chip Map

D0 D1 D2 D3 D4 D5 D6 D7 O0 O1 O2 O3

P0 P1 P2 P3

P6 P7 P8

P4 P5

Hierarchy 0

Hierarchy 1

Hierarchy 2

D Data Blocks P PosMap Blocks
O OccMap Blocks

D
R

A
M

Processor Chip

Onion ORAM: Oblivious Access to Cloud Storage

 Onion ORAM assumes server computation:

 Achieves O(1) bandwidth: Reads one block per path

 Uses PIR to execute both block requests and block evictions

 PIR based an Additive Homomorphic Encryption

 Selects 𝑌𝑖 ∈ 𝑌1, 𝑌2, … 𝑌𝑚 without revealing 𝑖

 User sends 𝐸 𝑥1 , 𝐸 𝑥2 , … , 𝐸 𝑥𝑚 where 𝑥𝑖 = 1 and other 𝑥𝑗 = 0

 Server evaluates 𝑌1⨂𝐸 𝑥1 ⨁ 𝑌2⨂𝐸 𝑥2 ⨁…⨁ 𝑌𝑚⨂𝐸 𝑥𝑚

= 𝐸 𝑌1𝑥1 + 𝑌2𝑥2 +⋯+ 𝑌𝑚𝑥𝑚 = 𝐸(𝑌𝑖)

 Adds a layer of encryption during eviction (like onion rings)

 each block moves at least one level down

 leaf blocks are refreshed by the user

Onion ORAM: Oblivious Access to Cloud Storage

 O(1) bandwidth blowup

 Moderate server computation

 Big block size

 Secure and correct in the malicious setting

 S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs, “Onion ORAM:
A Constant Bandwidth Blowup RAM,” TCC 2016

Timing Channel Protection

 Access ORAM at a fixed rate.

 Issue a dummy access when an ORAM access should be made but
there is no real request

Notation: ORAM interval (Oint)

 Make an ORAM access Oint cycles after the previous one returns

Data Integrity

 So far, we have been assuming server just watches traffic and runs arbitrary
software.

 What if the server modifies the user’s data in the ORAM?

 Data Integrity in ORAM is required.*

 Data integrity refers to maintaining and assuring the accuracy and consistency of data over its entire
life-cycle.

* Integrity Verification for Path Oblivious-RAM, Ling Ren, Christopher W. Fletcher, Xiangyao

Yu, Marten van Dijk and Srinivas Devadas, HPEC 2013.

17% latency overhead on top of recursive Path ORAM

Outline
 Motivation

 Challenges and Solutions

 Ascend Processor

 Stream applications

 Limitation of Ascend in Batch mode

 Secure Interaction with Ascend

Limitation of Ascend
 Batch computation model

 The channel between the user and Ascend is only used at beginning and end of
computation.

 No interaction during computation

 User input/output, network, disk, etc.

Network

Disk

Oblivious

RAM

Secure Interaction with Ascend

 Intuition

 As long as the I/O of Ascend does not depend on private data, no sensitive information is leaked.

 The server does not know any private data. If the server completely controls Ascend’s I/O behavior,
no sensitive information is leaked.

Streaming Applications

 Document Matching

 DNA Sequence Matching

 Content-Based Image Retrieval (CBIR)

 In all these applications, client has an encrypted document/gene sequence/image
that has to be matched privately with a large public data set that is streamed in

Evaluation

Applications Oracle-Ascend Stream-Ascend

Document Matching < 0.1% 24.5%

DNA Sequence Matching < 0.1% 0.7%

Content-Based Image Retrieval 2.6% 3.9%

• Hardware Platform

– Oracle-Ascend: No overhead in input thread

– Oracle-Baseline: Oracle-Ascend with DRAM as the main

memory

– Stream-Ascend: choose streaming interval carefully

• Small performance overhead because data records

fit in cache, and ORAM is rarely accessed.

The Full Picture

Periodic
Access

Ascend

A
E
S

Public Input (from the server)

Enc(Private input) (from the user)

AE
S

Time = 0

Enc(final result)

Time = T

Data Path ORAM

Stash

On-chip

Position

Map

ORAM

Interface

Position Map ORAMs

Input Scheduler

(public FSM)

Output Scheduler

(public FSM)

User

Network package,

user input, etc.
Disk

Server (untrusted)

Public Information

package size, arrival

time, etc.

FEF

BEF

Input

Thread

SIB

Output

Thread

SUB Application

Thread

Main
Program

0 < Time < T

Hash 0 Hash 1 Hash 2 Hash 3

Hash 4 Hash 5

Top hash

