
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Sanctum:
Minimal HW Extensions for Strong SW Isolation

Lecture 7a

Based on the corresponding paper authored by V. Coston, I. Lebedev, and S. Devadas

published at Usenix Security 2016 as well as V. Costan’s PhD thesis

Outline

 Adversarial Models AEGIS, Intel SGX, and Sanctum revisited

 Sanctum: HW Isolation – For remote attacks, no need for encryption and memory
integrity checking!

 Sanctum: Replaceable security software (security monitor) – Gives control!

 Sanctum: Protection against cache side channel attacks – and still practical!

2

AEGIS

3

TCB

TCB

Adversarial Model of AEGIS:

- Adversary can launch remote SW attacks

and physical tampering of main memory

- No attention is given to how

observation of access patterns can

leak sensitive information

- No protection against the cache covert

channel or other leakage from not

properly flushing buffers

- No protection against access to DRAM

by peripherals

- HW TCB = CPU chip (with caches, mem.

interface), Package

- AEGIS forbids access by untrusted OS

to reserved DRAM for Secure

Containers (think Enclaves)

- SW TCB = App. Mod. (in Secure Enclave @

lowest priv. level), Sec. Kernel (@ highest

priv. level in SMM) has no vulnerabilities

- Allows multiple modules

- Allows untrusted OS

SCM: Specialized HW (see MEE in the MC in SGX) that

ensures protection of each process:

• Computes hash of program and data

• Assigns a Secure Process ID for on-chip memory access

• Performs memory integrity checking for off-chip

memory access

Adversarial Models SGX and Sanctum

4

Adversarial Model of Sanctum:

- Adversary can only launch remote SW attacks

- Because of HW isolation no encryption is necessary

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a

trusted MCU (as in Intel SGX)

- Sanctum forbids access by untrusted OS to reserved

DRAM for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv.

level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing

channel attacks using locality preserving cache-

coloring)

- Allows untrusted OS

Adversarial Model SGX:

- Adversary can launch remote SW attacks and may actively

alter/observe DRAM content (for the latter we need the MEE

responsible for integrity checking and encryption):

- The adversary is not attempting to derive information

from access patterns to DRAM – either from actively

observing the bus or leakage from page misses or from

not properly flushing the branch history buffer (which

can be easily fixed) or from the cache covert channel

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a

trusted MC (as in Intel TXT) in the MEE on chip

- SGX forbids access by untrusted OS to reserved DRAM

for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv.

level), SGX micro code (@ highest priv. level, higher than

SMM’s level which includes BIOS)

- Allows multiple modules

- Allows untrusted OS
Intel SGX follows AEGIS’ blueprint !

Outline

 Adversarial Models AEGIS, Intel SGX, and Sanctum revisited

 Sanctum: HW Isolation – For remote attacks, no need for encryption and memory
integrity checking!

 Sanctum: Replaceable security software (security monitor) – Gives control!

 Sanctum: Protection against cache side channel attacks – and still practical!

5

HW Isolation

 HW isolation of secure enclaves protects against a remote adversary

 MEE/MC protects against an untrusted OS accessing DRAM through a peripheral

 Untrusted OS cannot access reserved enclave DRAM

 Untrusted OS cannot observe access pattern die to page misses …

 There is no automatic paging.

 If an enclave collaborates with an OS to implement paging, the OS sees anything the enclave explicitly reveals. Enclaves cannot
perform I/O directly.

 Enclaves do not have to store anything in untrusted DRAM to work, and are able to protect their page-level access pattern if
they absolutely must page. We will discuss Oblivious RAM (ORAM) next lecture – this technique can also be used for page level
access by an enclave at the trusted enclave DRAM memory to untrusted DRAM boundary

 A nice implementation exercise for the Sanctum framework

 Notice this can also be used in Intel SGX (albeit Intel SGX may swap out an enclave’s page on a page miss by another enclave
because there is automatic paging)

 Sanctum can easily implement flushing of the branch history table at an EEXIT and AEX

 Prevent cache side channel attacks by cache coloring (explained later)

 Prevent timing side channel leakage (in particular, by the security monitor)

6

Paging
 Writing enclaved applications is somewhat distinct from other software: an enclave is not automatically

managed by an OS

 Enclaves' isolation from supervisor software means that enclaves do not offer transparent handling of page
faults: an OS would need to be involved in any interaction with the disk, and interactions with the OS may
leak private information.

 Instead, the security monitor routes all faults to a handler in the enclave itself!
 The enclave is then able to make a decision as to its handling of the fault.

 Suicide is a reasonable option for many enclaves (the app under-budgeted its available memory, and does not wish to notify the
OS of this fact, so it terminates).

 If the enclaved program does wish to ask the OS to page to/from disk, it may choose to protect its privacy, for example by
implementing a page-level ORAM scheme (and pay the associated performance overhead) including randomized encryption and
memory integrity checking, hiding its page-level access pattern from the OS. This can become arbitrarily complex, including
periodic accesses to protect the timing of page faults, which too may leak private information.

 The enclave can of course choose to leak all this information and collaborate with the OS to implement
paging: the OS would manage some pages in its own memory, and the enclave would copy these to/from its
private pages.

 A reasonable tactic is to avoid implementing any page table management in the enclave, and to use static
enclave page tables prepared while the enclave is created.
 In order to see enclaves as trusted code, a small TCB is desirable (decrypt, process, encrypt).

 It makes a lot of sense to avoid implementing a large system within an enclave. Anything that requires paging sounds like a large
system.

7

Remote Adversary

 HW isolation implies that there is no need for

 Encryption

 Memory integrity checking

 Why?

 The remote adversary (untrusted OS) cannot access and tamper with the reserved enclave memory!!

 And cannot observe its access patterns (when access happens and to which address in memory)

8

Outline

 Adversarial Models AEGIS, Intel SGX, and Sanctum revisited

 Sanctum: HW Isolation – For remote attacks, no need for encryption and memory
integrity checking!

 Sanctum: Replaceable security software (security monitor) – Gives control!

 Sanctum: Protection against cache side channel attacks – and still practical!

9

Security Monitor

 SGX’s microcode is
replaced by a trusted
software component,
the security monitor,
which runs at the
highest privilege level
an therefore is immune
to compromised system
software

 Management of
computation resources
is relegated to
untrusted system
software (as in SGX)

10

The Measurement Root

11

Sanctum’s root of trust is a measurement root routine burned into the

CPU’s ROM. This code reads the security monitor from flash memory

and generates an attestation key and certificate based on the

monitor’s hash. Asymmetric key operations, colored in blue, are only

performed the first time a monitor is used on a computer.

The Signing Enclave

12

Certificate chain behind Sanctum’s SW attestation signatures

• Trusted manufacturer signs the PubPK of the Processor Key

• This endorses the processor with this key

• Can be verified using the signature/certificate with (trusted)

PubRK of the Manufacturer Root Key

• Processor Key (previous slide) is used to sign a certificate which

binds the PubMK of the Monitor Attestation Key and the Monitor

Meaurement which includes measuring the Signing Enclave

• The security monitor does not compute attestation signatures directly

as it is not executed in an enclave, hence, not isolated (and

vulnerable to leakage over the timing side channel)

• The signing enclave receives the monitor’s private attestation key via

an API call: When receiving the call, it compares the calling

enclave’s measurement with a hard-coded value and if matching,

copies the attestation key into the enclave’s memory.

• The signing enclave uses a mailbox to receive a report (using

simplified SGX’s local attestation), which includes

• The application enclave’s measurement

• Data to be reported/communicated

Security Monitor

 The monitor receives control after mroot finishes setting up
the attestation mechanism.

 The monitor provides API calls to the OS and enclaves for
DRAM region allocation and enclave management.

 After the system boots up, all DRAM regions are allocated
to the OS, which can free up DRAM regions so it can re-
assign them to enclaves or to itself.

 A DRAM region can only become free after it is blocked
by its owner. While blocked, any address translation
mapping to it causes page faults, so no new TLB entries
will be created for that region.

 The monitor ensures that the OS performs TLB flushes
before the OS frees blocked regions (in order to remove
stale entries for that region).

 This only requires TLB flushes on the cores (LPs) running that
enclave’s threads. 13

Local Attestation

 Cannot follow SGX’s approach because it relies on key derivation and MAC algorithms, and
Sanctum promises to avoid timing side channel leakage implying that the security monitor is
not allowed to perform cryptographic operations that use private keys.

 Each enclave has an array of mailboxes specified at its creation time

 An enclave that wishes to receive a message in a mailbox (e.g. signing enclave) declares its
intent by performing an accept message monitor call. The API call is used to specify the
mailbox that will receive the message and the identity of the enclave that is expected to
send the message.

 The sending enclave (e.g. the one wishing to be authenticated) performs a send message call
that specifies the identity of the receiving enclave and a mailbox within that enclave. The
monitor delivers messages to mailboxes that expect them.

 Hen the receiving enclave is notified via an out-of-band mechanism that it has received a
message, it issues a read message call to the monitor, which moves the message from the
mailbox into enclave’s memory.

14

Outline

 Adversarial Models AEGIS, Intel SGX, and Sanctum revisited

 Sanctum: HW Isolation – For remote attacks, no need for encryption and memory
integrity checking!

 Sanctum: Replaceable security software (security monitor) – Gives control!

 Sanctum: Protection against cache side channel attacks – and still practical!

15

Cache Coloring

 Toy example: 32-bit virtual addresses; 21-bit physical addresses; 4KB pages, a set-associative LLC with 512 sets and
64B cache lines, and 256KB of DRAM

 Location where a byte of data is cached in LLC depends on the low-order bits in the byte’s physical address:
 Set index determines which of the LLC lines can cache the line containing the byte

 The line offset locates the byte in the cache line

 Virtual address’s low order bit make up
 The page offset

 Virtual Page Number (VPN)

 Address translation leaves the page offset unchanged, and translates the VPN into a Physical Page Number (PPN)
16

Defined as the intersection

between cache index and PPN

• The maximal set of bits that

impact cache placement

and are determined by

privileged SW via page

tables

• Bits [14..12] define the

subset of DRAM with

addresses having the same

DRAM region index

Cache Coloring

 Addresses in a DRAM region do not collide in the LLC with addresses from any other
DRAM region!!

 If Alice and Eve use disjoint DRAM regions, then they do not interfere in the LLC and
a cache covert channel attack is impossible.

 Without Sanctum’s HW extension: DRAM regions are made up of multiple continuous
DRAM stripes where each stripe is exactly 1 page long.

17

Cache Coloring

 Fragmentation of DRAM regions
makes it difficult for the OS to
allocate contiguous DRAM buffers
(which are essential to the efficient
DMA transfers used by high
performance devices)

 If the OS only owns 4 DRAM regions,
the largest contiguous DRAM buffer it
can allocate is 16KB

 Circularly shifting the PPN to the right
by 1 bit, before it enters the LLC,
doubles the size of each DRAM stripe
and halves the number of stripes in a
DRAM region

18

Cache Coloring

19

Cache Address Shifter

 Example: Which PPN addresses are in DRAM region with index 011?
 These are addresses ******011************, i.e., address bits with positions 17, 16, 15 can be arbitrarily chosen and the page offset can be

arbitrarily chosen

 This means that the DRAM region has all the pages which start with a PPN of the form ******011000000000000

 Since we only have freedom in the higher order address bits, these pages are separated in DRAM (since 011 is three bits, every 2^3=8th page is in
the DRAM region)

 After cache address shifting over 3 positions the intersection of the Cache Set Index and the shifted PPN are bits 17,
16, 15
 the shifted PPN has the PPN bit positions in the following order: 14, 13, 12, 20, 19, 18, 17, 16, 15 and the lower 3 of these are in the cache set

index

 Now the pages in DRAM region 011 start with a PPN of the form ***011***00000000000

 This means that they contain 8=2^3 consecutive pages! (Because there are 3 degrees of freedom in the lower order PPN bits right after the page
offset.)

 It does not help to shift more: The 3 highest order PPN bits are not used since the DRAM is only 256B (i.e., only PPN bits 12 to 17 are used)

20

Transformation Logic

 DMA bus master rejects DMA
transfers pointing into DRAM
regions allocated to enclaves
(similar to modifications done by
SGX and TXT revisions to the
integrated Memory Controller).

 Uses a whitelist approach instead
of following SGX’s blacklist
approach

21

Performance

22

Page Walker Input

 Sanctum’s enclave page tables require an enclave page table
register eptbr storing the physical address of the currently
running enclave’s page tables (each enclave stores its own page
tables)

 ptbr points to OS managed page tables

 The per-enclave eptbr can only be accessed by the security monitor

 TLB misses:

 Switches between ptbr and eptbr based on two registers that indicate the
current enclave’s EVRANGE: evbase (enclave virtual address space base) and
evmask (enclave virtual address space mask)

 Select appropriate page table base by ANDing the faulting virtual address
with the mask register and comparing output against the base register

 Depending on result either eptbr or ptbr is forwarded to the page walker as
the page table base address

23

Page Walker Memory Access

 Address translation is performed by a HW page walker
that traverses page tables when a TLB miss occurs.

 Page walker’s latency greatly impacts the CPU’s performance

 It is implemented as a FSM that reads page table entries by issuing
DRAM read requests using physical addresses over a dedicated bus to
L1 cache

 Modifications require a lot of engineering effort; yet, Sanctum
demands that the page walker only references enclave memory when
traversing the enclave page tables and only references OS memory
when translating the OS page tables

 Solution: No FSM modification; Security monitor works in concert with
the circuit on the right

 The circuit receives each page table entry fetched by the FSM, and
sanitizes it before it reaches the page walker FSM

 Security monitor configures the set of DRAM regions that page tables
may reference by writing to a DRAM region bitmap (drbmap) register

24

Page Walker Memory Access
 Circuit extracts the DRAM region index from the address in the page

table entry and looks it up in the DRAM region bitmap

 If it does not belong to allowable DRAM region, then the page table
entry’s valid bit is forced to 0 (causing the page walker FSM to abort
the address translation and signal a page fault)

 Security monitor maintains metadata about each enclave in the
enclave’s DRAM regions. Metadata must not be writable by the
enclave.

 Sanctum extends the page table entry transformation to implement
per-enclave read-only areas. The resulting protected physical
address range is indicated by parbase and parmask registers.

 Circuit checks if each page table entry points into the protected
range.

 If a leaf page table entry is seen with a protected address, its
permission bits are masked with a protected permissions mask
parpmask register. If a protected address is discovered in an
intermediate page table entry, its valid bit is cleared to 0 – prevents
the page walker FSM from modifying the protected region by setting
accessed and dirty bits.

25

Transformation Logic

26

