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Outline

 Adversarial Models AEGIS, Intel SGX, and Sanctum revisited

 Sanctum: HW Isolation – For remote attacks, no need for encryption and memory 
integrity checking!

 Sanctum: Replaceable security software (security monitor) – Gives control!

 Sanctum: Protection against cache side channel attacks – and still practical!
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AEGIS
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TCB

TCB

Adversarial Model of AEGIS: 

- Adversary can launch remote SW attacks 

and physical tampering of main memory

- No attention is given to how 

observation of access patterns can 

leak sensitive information 

- No protection against the cache covert 

channel or other leakage from not 

properly flushing buffers

- No protection against access to DRAM 

by peripherals 

- HW TCB = CPU chip (with caches, mem. 

interface), Package

- AEGIS forbids access by untrusted OS 

to reserved DRAM for Secure 

Containers (think Enclaves)

- SW TCB = App. Mod. (in Secure Enclave @ 

lowest priv. level), Sec. Kernel (@ highest 

priv. level in SMM) has no vulnerabilities

- Allows multiple modules

- Allows untrusted OS

SCM: Specialized HW (see MEE in the MC in SGX) that 

ensures protection of each process:

• Computes hash of program and data

• Assigns a Secure Process ID for on-chip memory access

• Performs memory integrity checking for off-chip 

memory access



Adversarial Models SGX and Sanctum
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Adversarial Model of Sanctum: 

- Adversary can only launch remote SW attacks

- Because of HW isolation no encryption is necessary

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a 

trusted MCU (as in Intel SGX)

- Sanctum forbids access by untrusted OS to reserved 

DRAM for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv. 

level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing 

channel attacks using locality preserving cache-

coloring)

- Allows untrusted OS

Adversarial Model SGX: 

- Adversary can launch remote SW attacks and may actively 

alter/observe DRAM content (for the latter we need the MEE 

responsible for integrity checking and encryption):

- The adversary is not attempting to derive information 

from access patterns to DRAM – either from actively 

observing the bus or leakage from page misses or from 

not properly flushing the branch history buffer (which 

can be easily fixed) or from the cache covert channel

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a 

trusted MC (as in Intel TXT) in the MEE on chip 

- SGX forbids access by untrusted OS to reserved DRAM 

for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv. 

level), SGX micro code (@ highest priv. level, higher than 

SMM’s level which includes BIOS)

- Allows multiple modules

- Allows untrusted OS
Intel SGX follows AEGIS’ blueprint !
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HW Isolation

 HW isolation of secure enclaves protects against a remote adversary

 MEE/MC protects against an untrusted OS accessing DRAM through a peripheral

 Untrusted OS cannot access reserved enclave DRAM

 Untrusted OS cannot observe access pattern die to page misses …

 There is no automatic paging.

 If an enclave collaborates with an OS to implement paging, the OS sees anything the enclave explicitly reveals. Enclaves cannot 
perform I/O directly.

 Enclaves do not have to store anything in untrusted DRAM to work, and are able to protect their page-level access pattern if 
they absolutely must page. We will discuss Oblivious RAM (ORAM) next lecture – this technique can also be used for page level 
access by an enclave at the trusted enclave DRAM memory to untrusted DRAM boundary

 A nice implementation exercise for the Sanctum framework

 Notice this can also be used in Intel SGX (albeit Intel SGX may swap out an enclave’s page on a page miss by another enclave 
because there is automatic paging)

 Sanctum can easily implement flushing of the branch history table at an EEXIT and AEX

 Prevent cache side channel attacks by cache coloring (explained later)

 Prevent timing side channel leakage (in particular, by the security monitor) 
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Paging
 Writing enclaved applications is somewhat distinct from other software: an enclave is not automatically 

managed by an OS

 Enclaves' isolation from supervisor software means that enclaves do not offer transparent handling of page 
faults: an OS would need to be involved in any interaction with the disk, and interactions with the OS may 
leak private information.

 Instead, the security monitor routes all faults to a handler in the enclave itself!
 The enclave is then able to make a decision as to its handling of the fault. 

 Suicide is a reasonable option for many enclaves (the app under-budgeted its available memory, and does not wish to notify the 
OS of this fact, so it terminates). 

 If the enclaved program does wish to ask the OS to page to/from disk, it may choose to protect its privacy, for example by 
implementing a page-level ORAM scheme (and pay the associated performance overhead) including randomized encryption and 
memory integrity checking, hiding its page-level access pattern from the OS. This can become arbitrarily complex, including 
periodic accesses to protect the timing of page faults, which too may leak private information.

 The enclave can of course choose to leak all this information and collaborate with the OS to implement 
paging: the OS would manage some pages in its own memory, and the enclave would copy these to/from its 
private pages.

 A reasonable tactic is to avoid implementing any page table management in the enclave, and to use static 
enclave page tables prepared while the enclave is created. 
 In order to see enclaves as trusted code, a small TCB is desirable (decrypt, process, encrypt). 

 It makes a lot of sense to avoid implementing a large system within an enclave. Anything that requires paging sounds like a large 
system.
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Remote Adversary

 HW isolation implies that there is no need for

 Encryption

 Memory integrity checking

 Why?

 The remote adversary (untrusted OS) cannot access and tamper with the reserved enclave memory!!

 And cannot observe its access patterns (when access happens and to which address in memory)
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Security Monitor

 SGX’s microcode is 
replaced by a trusted 
software component, 
the security monitor, 
which runs at the 
highest privilege level 
an therefore is immune 
to compromised system 
software

 Management of 
computation resources 
is relegated to 
untrusted system 
software (as in SGX)
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The Measurement Root
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Sanctum’s root of trust is a measurement root routine burned into the 

CPU’s ROM. This code reads the security monitor from flash memory 

and generates an attestation key and certificate based on the 

monitor’s hash. Asymmetric key operations, colored in blue, are only 

performed the first time a monitor is used on a computer.



The Signing Enclave
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Certificate chain behind Sanctum’s SW attestation signatures

• Trusted manufacturer signs the PubPK of the Processor Key

• This endorses the processor with this key

• Can be verified using the signature/certificate with (trusted) 

PubRK of the Manufacturer Root Key

• Processor Key (previous slide) is used to sign a certificate which 

binds the PubMK of the Monitor Attestation Key and the Monitor 

Meaurement which includes measuring the Signing Enclave 

• The security monitor does not compute attestation signatures directly 

as it is not executed in an enclave, hence, not isolated (and 

vulnerable to leakage over the timing side channel)

• The signing enclave receives the monitor’s private attestation key via 

an API call: When receiving the call, it compares the calling 

enclave’s measurement with a hard-coded value and if matching, 

copies the attestation key into the enclave’s memory.

• The signing enclave uses a mailbox to receive a report (using 

simplified SGX’s local attestation), which includes 

• The application enclave’s measurement

• Data to be reported/communicated



Security Monitor

 The monitor receives control after mroot finishes setting up 
the attestation mechanism.

 The monitor provides API calls to the OS and enclaves for 
DRAM region allocation and enclave management.

 After the system boots up, all DRAM regions are allocated 
to the OS, which can free up DRAM regions so it can re-
assign them to enclaves or to itself. 

 A DRAM region can only become free after it is blocked 
by its owner. While blocked, any address translation 
mapping to it causes page faults, so no new TLB entries 
will be created for that region.

 The monitor ensures that the OS performs TLB flushes 
before the OS frees blocked regions (in order to remove 
stale entries for that region).

 This only requires TLB flushes on the cores (LPs) running that 
enclave’s threads. 13



Local Attestation

 Cannot follow SGX’s approach because it relies on key derivation and MAC algorithms, and 
Sanctum promises to avoid timing side channel leakage implying that the security monitor is 
not allowed to perform cryptographic operations that use private keys.

 Each enclave has an array of mailboxes specified at its creation time

 An enclave that wishes to receive a message in a mailbox (e.g. signing enclave) declares its 
intent by performing an accept message monitor call. The API call is used to specify the 
mailbox that will receive the message and the identity of the enclave that is expected to 
send the message.

 The sending enclave (e.g. the one wishing to be authenticated) performs a send message call 
that specifies the identity of the receiving enclave and a mailbox within that enclave. The 
monitor delivers messages to mailboxes that expect them.

 Hen the receiving enclave is notified via an out-of-band mechanism that it has received a 
message, it issues a read message call to the monitor, which moves the message from the 
mailbox into enclave’s memory.
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Cache Coloring

 Toy example: 32-bit virtual addresses; 21-bit physical addresses; 4KB pages, a set-associative LLC with 512 sets and 
64B cache lines, and 256KB of DRAM

 Location where a byte of data is cached in LLC depends on the low-order bits in the byte’s physical address:
 Set index determines which of the LLC lines can cache the line containing the byte

 The line offset locates the byte in the cache line

 Virtual address’s low order bit make up
 The page offset

 Virtual Page Number (VPN)

 Address translation leaves the page offset unchanged, and translates the VPN into a Physical Page Number (PPN)
16

Defined as the intersection 

between cache index and PPN

• The maximal set of bits that 

impact cache placement 

and are determined by 

privileged SW via page 

tables

• Bits [14..12] define the 

subset of DRAM with 

addresses having the same 

DRAM region index



Cache Coloring

 Addresses in a DRAM region do not collide in the LLC with addresses from any other 
DRAM region!!

 If Alice and Eve use disjoint DRAM regions, then they do not interfere in the LLC and 
a cache covert channel attack is impossible.

 Without Sanctum’s HW extension: DRAM regions are made up of multiple continuous 
DRAM stripes where each stripe is exactly 1 page long.
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Cache Coloring

 Fragmentation of DRAM regions 
makes it difficult for the OS to 
allocate contiguous DRAM buffers 
(which are essential to the efficient 
DMA transfers used by high 
performance devices)

 If the OS only owns 4 DRAM regions, 
the largest contiguous DRAM buffer it 
can allocate is 16KB

 Circularly shifting the PPN to the right 
by 1 bit, before it enters the LLC, 
doubles the size of each DRAM stripe 
and halves the number of stripes in a 
DRAM region
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Cache Coloring
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Cache Address Shifter

 Example: Which PPN addresses are in DRAM region with index 011? 
 These are addresses ******011************, i.e., address bits with positions 17, 16, 15 can be arbitrarily chosen and the page offset can be 

arbitrarily chosen

 This means that the DRAM region has all the pages which start with a PPN of the form ******011000000000000

 Since we only have freedom in the higher order address bits, these pages are separated in DRAM (since 011 is three bits, every 2^3=8th page is in 
the DRAM region)

 After cache address shifting over 3 positions the intersection of the Cache Set Index and the shifted PPN are bits 17, 
16, 15 
 the shifted PPN has the PPN bit positions in the following order: 14, 13, 12, 20, 19, 18, 17, 16, 15 and the lower 3 of these are in the cache set 

index

 Now the pages in DRAM region 011 start with a PPN of the form  ***011***00000000000

 This means that they contain 8=2^3 consecutive pages! (Because there are 3 degrees of freedom in the lower order PPN bits right after the page 
offset.)

 It does not help to shift more: The 3 highest order PPN bits are not used since the DRAM is only 256B (i.e., only PPN bits 12 to 17 are used)
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Transformation Logic

 DMA bus master rejects DMA 
transfers pointing into DRAM 
regions allocated to enclaves 
(similar to modifications done by 
SGX and TXT revisions to the 
integrated Memory Controller).

 Uses a whitelist approach instead 
of following SGX’s blacklist 
approach
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Performance
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Page Walker Input

 Sanctum’s enclave page tables require an enclave page table 
register eptbr storing the physical address of the currently 
running enclave’s page tables (each enclave stores its own page 
tables)

 ptbr points to OS managed page tables

 The per-enclave eptbr can only be accessed by the security monitor

 TLB misses:

 Switches between ptbr and eptbr based on two registers that indicate the 
current enclave’s EVRANGE: evbase (enclave virtual address space base) and 
evmask (enclave virtual address space mask)

 Select appropriate page table base by ANDing the faulting virtual address 
with the mask register and comparing output against the base register

 Depending on result either eptbr or ptbr is forwarded to the page walker as 
the page table base address
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Page Walker Memory Access

 Address translation is performed by a HW page walker 
that traverses page tables when a TLB miss occurs. 

 Page walker’s latency greatly impacts the CPU’s performance

 It is implemented as a FSM that reads page table entries by issuing 
DRAM read requests using physical addresses over a dedicated bus to 
L1 cache

 Modifications require a lot of engineering effort; yet, Sanctum 
demands that the page walker only references enclave memory when 
traversing the enclave page tables and only references OS memory 
when translating the OS page tables

 Solution: No FSM modification; Security monitor works in concert with 
the circuit on the right

 The circuit receives each page table entry fetched by the FSM, and 
sanitizes it before it reaches the page walker FSM

 Security monitor configures the set of DRAM regions that page tables 
may reference by writing to a DRAM region bitmap (drbmap) register

24



Page Walker Memory Access
 Circuit extracts the DRAM region index from the address in the page 

table entry and looks it up in the DRAM region bitmap

 If it does not belong to allowable DRAM region, then the page table 
entry’s valid bit is forced to 0 (causing the page walker FSM to abort 
the address translation and signal a page fault)

 Security monitor maintains metadata about each enclave in the 
enclave’s DRAM regions. Metadata must not be writable by the 
enclave.

 Sanctum extends the page table entry transformation to implement 
per-enclave read-only areas. The resulting protected physical 
address range is indicated by parbase and parmask registers.

 Circuit checks if each page table entry points into the protected 
range.

 If a leaf page table entry is seen with a protected address, its 
permission bits are masked with a protected permissions mask 
parpmask register. If a protected address is discovered in an 
intermediate page table entry, its valid bit is cleared to 0 – prevents 
the page walker FSM from modifying the protected region by setting 
accessed and dirty bits.
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Transformation Logic
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