
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Memory Integrity Checking in AEGIS and Intel SGX

Lecture 6ab

See next slide for sources from which we took material for slides.

Material Used:

2

Material taken from:

1. Intel SGX Tutorial (Reference Number: 332680-002) presented at ISCA 2015

2. “Intel SGX Explained”, Victor Costan and Srinivas Devadas, CSAIL MIT

3. S. Gueron, Intel® Software Guard Extensions (Intel® SGX) Memory Encryption Engine (MEE), RWC 2016.

4. S. Gueron, A Memory Encryption Engine Suitable for General Purpose Processors[J].

5. “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random

Functions,” slides by G. E. Suh, C. W. O’Donnell, I. Sachdev, and S, Devadas

Outline

 Hash Tree for Memory Integrity Checking & Encryption

 AEGIS

 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

3

4

5

6

7

8

Counter Mode Encryption

9

Hides decryption latency:

B[1] can be retrieved while the second

AES decryption is in process, etc.

Outline

 Hash Tree for Memory Integrity Checking & Encryption

 AEGIS

 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

10

Aegis

 The Aegis secure processor relies on a security kernel in the operating system to
isolate containers, and includes the kernel’s cryptographic hash in the measurement
reported by the software attestation signature.

 The Aegis memory controller encrypts the cache lines in one memory range, and
HMACs the cache lines in one other memory range.

 Aegis was the first secure processor not vulnerable to physical replay attacks, as it
uses a Merkle tree construction to guarantee DRAM freshness.

11

AEGIS

12

TCB

TCB

Adversarial Model of AEGIS:

- Adversary can launch remote SW attacks

and physical tampering of main memory

- No attention is given to how

observation of access patterns can

leak sensitive information

- No protection against the cache covert

channel or other leakage from not

properly flushing buffers

- No protection against access to DRAM

by peripherals

- HW TCB = CPU chip (with caches, mem.

interface), Package

- AEGIS forbids access by untrusted OS

to reserved DRAM for Secure

Containers (think Enclaves)

- SW TCB = App. Mod. (in Secure Enclave @

lowest priv. level), Sec. Kernel (@ highest

priv. level in SMM) has no vulnerabilities

- Allows multiple modules

- Allows untrusted OS

SCM: Specialized HW (see MEE in the MC in SGX) that

ensures protection of each process:

• Computes hash of program and data

• Assigns a Secure Process ID for on-chip memory access

• Performs memory integrity checking for off-chip

memory access

Adversarial Models SGX and Sanctum

13

Adversarial Model of Sanctum:

- Adversary can only launch remote SW attacks

- Because of HW isolation no encryption is necessary

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a

trusted MCU (as in Intel SGX)

- Sanctum forbids access by untrusted OS to reserved

DRAM for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv.

level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing

channel attacks using locality preserving cache-

coloring)

- Allows untrusted OS

Adversarial Model SGX:

- Adversary can launch remote SW attacks and may actively

alter/observe DRAM content (for the latter we need the MEE

responsible for integrity checking and encryption):

- The adversary is not attempting to derive information

from access patterns to DRAM – either from actively

observing the bus or leakage from page misses or from

not properly flushing the branch history buffer (which

can be easily fixed) or from the cache covert channel

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a

trusted MC (as in Intel TXT) in the MEE on chip

- SGX forbids access by untrusted OS to reserved DRAM

for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv.

level), SGX micro code (@ highest priv. level, higher than

SMM’s level which includes BIOS)

- Allows multiple modules

- Allows untrusted OS
Intel SGX follows AEGIS’ blueprint !

14

Authentication
 The processor identifies security kernel by computing the kernel’s

hash (on the l.enter.aegis instruction)
 Similar to ideas in TCG TPM and Microsoft NGSCB

 Security kernel identifies application programs

 H(SKernel) is used to produce a unique key for security kernel
from a PUF response (l.puf.secret instruction)
 Security kernel provides a unique key for each application

Message Authentication Code (MAC)

A server can authenticate the processor,

the security kernel, and the application

Application

(DistComp)

Security

Kernel H(SKernel)

H(App)

15

Protecting Program State

Memory Encryption: Counter-mode encryption

Integrity Verification: Hash trees

Processor External Memory

write

read

INTEGRITY
VERIFICATION

ENCRYPT /
DECRYPT

• On-chip registers and caches
– Security kernel handles context switches and permission checks

in MMU

16

A Simple Protection Model

How should we apply the authentication
and protection mechanisms?

What to protect?

 All instructions and data

 Both integrity and privacy

What to trust?

 The entire program code

 Any part of the code can read/write protected
data

Program Code

(Instructions)

Initialized Data

(.rodata, .bss)

Uninitialized Data

(stack, heap)

Memory Space

Encrypted

&

Integrity

Verified

Hash



Program

Identity

17

What Is Wrong?
 Large Trusted Code Base

 Difficult to verify to be bug-free

 How can we trust shared libraries?

 Applications/functions have varying security requirements

 Do all code and data need privacy?

 Do I/O functions need to be protected?

Unnecessary performance and power overheads

 Architecture should provide flexibility so that software can choose
the minimum required trust and protection

18

Distributed Computation Example

Obtaining a secret key and computing a
MAC

 Need both privacy and integrity

Computing the result

 Only need integrity

Receiving the input and sending the result
(I/O)

 No need for protection

 No need to be trusted

DistComp()

{

x = Receive();

result = Func(x);

key = get_puf_secret();

mac = MAC(x,result,key);

Send(result,mac);

}

19

AEGIS Memory Protection

Architecture provides five different
memory regions

 Applications choose how to use

Static (read-only)

 Integrity verified

 Integrity verified & encrypted

Dynamic (read-write)

 Integrity verified

 Integrity verified & encrypted

Unprotected

Only authenticate code in the
verified regions

Memory Space

Static

Verified

Dynamic

Encrypted
Dynamic

Verified

Static

Encrypted

Unprotected

Unprotected
Receive(), Send()

Receive(), Send()

data

Func(), MAC()

Func() data

MAC() data

20

Suspended Secure Processing (SSP)

Two security levels within a process

 Untrusted code such as Receive() and Send()
should have less privilege

Architecture ensures that SSP mode cannot
tamper with secure processing

 No permission for protected memory

 Only resume secure processing at a specific point

STD

TE/PTR

SSP

Start-up

Secure Modes

Insecure (untrusted) Modes

Compute

Hash
Suspend

Resume

21

22

23

Implementation

Fully-functional system on an FPGA board
 AEGIS (Virtex2 FPGA), Memory (256MB SDRAM), I/O (RS-232)

 Based on openRISC 1200 (a simple 4-stage pipelined RISC)

 AEGIS instructions are implemented as special traps

Processor (FPGA)

External Memory

RS-232

24

Area Estimate

Synopsys DC with TSMC
0.18u lib

New instructions and
PUF add 30K gates,
2KB mem (1.12x larger)

Off-chip protection adds
200K gates, 20KB
memory (1.9x larger
total)

The area can be further
optimized

Core

I-Cache

(32KB)

0.512mm2 1.815mm2

D-Cache

(32KB)

2.512mm2

I/O (UART, SDRAM ctrl, debug unit) 0.258mm2

IV Unit

(5 SHA-1)

1.075mm2

Encryption Unit

(3 AES)

0.864mm2

Cache

(16KB)

1.050mm2

0.086mm2

Cache (4KB)

0.504mm2
Code ROM

(11KB)

0.138mm2

Scratch

Pad (2KB)

0.261mm2

PUF 0.027mm2

25

Performance Slowdown

Performance overhead comes from off-
chip protections

Synthetic benchmark

 Reads 4MB array with a varying stride

 Measures the slowdown for a varying cache miss-
rate

Slowdown is reasonable for realistic miss-
rates

 Less than 20% for integrity

 5-10% additional for encryption

D-Cache

miss-rate

Slowdown (%)

Integrity
Integrity +

Privacy

6.25% 3.8 8.3

12.5% 18.9 25.6

25% 31.5 40.5

50% 62.1 80.3

100% 130.0 162.0

26

EEMBC/SPEC Performance

5 EEMBC kernels and 1
SPEC benchmark

EEMBC kernels have
negligible slowdown

 Low cache miss-rate

 Only ran 1 iteration

SPEC twolf also has
reasonable slowdown

Benchmark

Slowdown (%)

Integrity
Integrity +

Privacy

routelookup 0.0 0.3

ospf 0.2 3.3

autocor 0.1 1.6

conven 0.1 1.3

fbital 0.0 0.1

twolf (SPEC) 7.1 15.5

Outline

 Hash Tree for Memory Integrity Checking & Encryption

 AEGIS

 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

27

Memory Encryption Engine

 Memory Encryption Engine (MEE):

 Added in the uncore part of the processor (Memory Controller)

 Protects SGX’s Enclave Page Cache against the following physical attacks:

 Data Confidentiality: Collections of memory images of DATA written to the DRAM cannot be distinguished from random data.

 Integrity + freshness: DATA read back from DRAM to LLC is the same DATA that was most recently written from LLC to DRAM.

28

29

Unauthorized DMA

transactions that target the

PRM (Processor Reversed

Memory) range should be

aborted.

30

Encryption Key: 128 bits

MAC Key: 128 bits

Hash Key: 512 bits

31

Message Authentication Code

 MAC can be used to protected memory integrity.

 But what is the problem if we only use MAC?

 Replay attack

 Solutions:

 1. Hash Tree (Store updated root hash in TCB)

 One root hash for the whole memory

 2. Stateful MAC (Store updated states in TCB)

 One state for each cache line

 How to store all the states efficiently???

32

One level data structure

33

Tag = MAC (CTR, CL)

CTR is trusted

Integrity + freshness

Too many counters in trusted region. Too

expensive!

34

Embedded MAC tags

35

Embedded MAC tags into counter

cache line to save the memory

accesses.

Why don’t we embed tags

into data cache lines as well?

A Counter Cache Line

36

Tag

Counter

56 * 8 + 56 + 8 = 512

56-bit counters

56-bit tags

37

Counter

Cache

Lines

Data Cache Line

Tag Cache Line

What is the

compression

rate?

38

Comparison with Hash Tree

39

Access this

data

40

41

Outline

 Hash Tree for Memory Integrity Checking & Encryption

 AEGIS

 SGX Memory Encryption Engine (MEE)

 SGX Memory Access Protection

42

SGX Memory Access Protection

 MEE sits in MC, it cannot protect an enclave’s memory from software attacks.

 The root of SGX’s protections against software attacks is memory access checks
which prevents the currently running software from accessing memory that does not
belong to it.

 Implemented in Page Miss Handler (PMH)

 PMH triggers the extra microcode for all address translations

 All the SGX instructions are implemented in microcode, which introduces
many new registers for storing metadata of enclave.

43

Security Check for Memory Access

44

SGX adds a few security checks to the PMH. The checks

ensure that all the TLB entries created by the address

translation unit meet SGX’s memory access restrictions.

SGX Security Check Correctness

 Top-level invariant: At all times, all the TLB entries in every logical processor will be
consistent with SGX’s security guarantees.

 First breakdown the top level invariant into three cases on:

 whether a logical processor (LP) is executing enclave code or not

 whether the TLB entries translate virtual addresses in the current enclave’s ELRANGE

45

Case Invariants

 1. At all times when an LP is outside enclave mode, its TLB may only contain physical
addresses belonging to DRAM pages outside the PRM.

 2. At all times when an LP is inside enclave mode, the TLB entries for virtual
addresses outside the current enclave’s ELRANGE must contain physical addresses
belonging to DRAM pages outside the PRM.

 3. At all times when an LP is in enclave mode, the TLB entries for virtual addresses
inside the current enclave’s ELRANGE (Enclave Linear Address Range) must match
the virtual memory layout specified by the enclave author.

46

Proof of Invariant 1

 At all times when an LP is outside enclave
mode, its TLB may only contain physical
addresses belonging to DRAM pages
outside the PRM.

47

Proof of Invariant 2
 At all times when an LP is inside enclave mode,

the TLB entries for virtual addresses outside the
current enclave’s ELRANGE (Enclave Linear
Address Range) must contain physical addresses
belonging to DRAM pages outside the PRM.

48

Proof of Invariant 3

 At all times when an LP is in enclave
mode, the TLB entries for virtual addresses
inside the current enclave’s ELRANGE
(Enclave Linear Address Range) must
match the virtual memory layout specified
by the enclave author.

49

The entire flow

50

Invariant 1

Invariant 2

Invariant 3

Top-level invariant: At all times, all

the TLB entries in every logical

processor will be consistent with

SGX’s security guarantees.

