CSE 5095 & ECE 4451 & ECE 5451 — Spring 2017

Lecture 6ab

Memory Integrity Checking in AEGIS and Intel SGX

Marten van Dijk
Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering
University of Connecticut

UBUNN See next slide for sources from which we took material for slides.

Material Used:

Material taken from:

Intel SGX Tutorial (Reference Number: 332680-002) presented at ISCA 2015

“Intel SGX Explained”, Victor Costan and Srinivas Devadas, CSAIL MIT

S. Gueron, Intel® Software Guard Extensions (Intel® SGX) Memory Encryption Engine (MEE), RWC 2016.
S. Gueron, A Memory Encryption Engine Suitable for General Purpose Processors[J].

“Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random
Functions,” slides by G. E. Suh, C. W. O’Donnell, I. Sachdev, and S, Devadas

LARE o B

Outline

* Hash Tree for Memory Integrity Checking & Encryption

Checking external memory:
Hash Tree (or Merkle Tree)

Root hash
Secure) k ~16-20 bytes]
Insecure r;;;ll-ll-ll-ll-ll-ll-ll-ll-ll-ll-ll-ll-;::ﬁ-
L m level 1 hashes i
- “'//’ e N H""‘x_x
!I—/fl lllllllllllll ‘: lllllllllllllllllllllllllllllll : i-ll-ll-ll-ll;;rh
l level 2 hashes I
[1 X]

| Data RAM :ﬁ ~ 1Gbge= .

By generalizing we can build a tree of hashes, which gives
a better compromise.

»Secure Storage: k
*RAM overhead: 1/(m-1)
*Read/Write cost: log_(N)

This slide has been taken from presentation by Blaise Gassend on "Caches and Hash Trees for Efficient Memory
Integrity Verification”

Checking external memory:
Hashing External Memory

Hash (k ~ 16-20 bytes
Secure

Insecure

RAM (N ~ 1Gbyte

Single hash can be used to protect the whole memory.

sSecure Storage: k
*RAM overhead: none
sRead/Write cost: N

This slide has been taken from presentation by Blaise Gassend on “"Caches and Hash Trees for Efficient Memory
Integrity Verification”

Checking external memory:
Multiple Hashes

Secure

Insecure

RAM ~ 1Gbyte) partitioned into p chunks

Read/write cost can be reduced by splitting the memory
into chunks that have different hashes.

sSecure Storage: pk
*RAM overhead: none
*Read/Write cost: N/p

This slide has been taken from presentation by Blaise Gassend on "Caches and Hash Trees for Efficient Memory
Integrity Verification”

Caching and Hash Trees:Naive
Aprproach

Processor
Hash T RAM
T L2 Cache MzzhinZ; (unchecked data
L1 Cache (checked data) (root hash) and hashes)

(checked data)

The simplest way of integrating hash trees into the memory hierarchy is to
place all the hash tree machinery between two cache levels.

=« Trusted side: checked data.
« Untrusted side: unchecked data and hashes.
Main problem:
= Each miss in L2 produces log_(N) accesses to RAM.,

This slide has been taken from presentation by Blaise Gassend on “Caches and Hash Trees for Efficient Memory
Integrity Verification”

Caching Hashes:
Integrated approach

Hash Tree Machinery
(root hash)

Processor 1.2 Cache
s - (checked data (unchecked data
‘ % and hashes
(hL lkczuélaet) &g and hashes) :
checke a
=
&
e

m Much better performance if the hash tree machinery is integrated with
L2 cache:

» Hash tree machinery intercepts accesses to RAM.

» Hash tree machinery reads and writes hashes it needs via L2.

m Big performance boost because:

» Checked hashes are cached in trusted L2, so most accesses to external

memory do not have to go to the root of the tree.

This slide has been taken from presentation by Blaise Gassend on "Caches and Hash Trees for Efficient Memory
Integrity Verification”

Counter Mode Encryption

(Fixed Vector, (Fixed Vector, (Fixed Vector, (Fixed Vector, M
1mm - Address, Address, Address, Address,
""* Time Stamp, 1) Time Stamp. 2) Time Stamp, 3) Time Stamp, 4)

v ¢_ \ Pad

Generation

~ Encryption

sy

™

i =2 In Memory

Hides decryption latency:
~Decryption B[1] can be retrieved while the second
AES decryption is in process, etc.

9

Outline

" Hash Tree for Memory Integrity Checking & Encryption

= AEGIS
= SGX Memory Encryption Engine (MEE)

= SGX Memory Access Protection

Aegis

The Aegis secure processor relies on a security kernel in the operating system to
isolate containers, and includes the kernel’s cryptographic hash in the measurement
reported by the software attestation signature.

The Aegis memory controller encrypts the cache lines in one memory range, and
HMACs the cache lines in one other memory range.

Aegis was the first secure processor not vulnerable to physical replay attacks, as it
uses a Merkle tree construction to guarantee DRAM freshness.

SCM: Specialized HW (see MEE in the MC in SGX) that
ensures protection of each process:

* Computes hash of program and data

* Assigns a Secure Process ID for on-chip memory access

AEGIS -

Adversarial Model of AEGIS:
Adversary can launch remote SW attacks
and physical tampering of main memory

* Performs memory integrity checking-foroff-chip

memory access
Security.
Kernel TCB

Untrusted Part of O/S

Physical
Attacks

X

r

Malicious
Software

‘ Encryption

[Registers |—

Integrity

+ Untrusted

Memaory

Secure Context Verification
Manager
- —| SCM TCB
IF'rwate Key Tabla
Processor

I Key I Display

Sound
card

- No attention is given to how
observation of access patterns can
leak sensitive information

- No protection against the cache covert
channel or other leakage from not
properly flushing buffers

- No protection against access to DRAM
by peripherals

- HW TCB = CPU chip (with caches, mem.

interface), Package
\ - AEGIS forbids access by untrusted OS

Software, to reserved DRAM for Secure
iﬁg;séi? Containers (think Enclaves)

- SW TCB = App. Mod. (in Secure Enclave @
lowest priv. level), Sec. Kernel (@ highest
priv. level in SMM) has no vulnerabilities

- Allows multiple modules
- Allows untrusted OS

Suh et al., "AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing”, ICS, 2003 12

alter /observe DRAM content (for the latter we need the MEE

Adversarial Models SGX and Sanctum

Adversarial Model SGX:
Adversary can launch remote SW attacks and may actively

responsible for integrity checking and encryption):

The adversary is not attempting to derive information
from access patterns to DRAM — either from actively
observing the bus or leakage from page misses or from
not properly flushing the branch history buffer (which
can be easily fixed) or from the cache covert channel

HW TCB = CPU chip (with caches, mem. interface), Package

Access to DRAM by peripherals is controlled by a
trusted MC (as in Intel TXT) in the MEE on chip

SGX forbids access by untrusted OS to reserved DRAM
for Secure Enclaves

SW TCB = App. Mod. (in Secure Enclave @ lowest priv.
level), SGX micro code (@ highest priv. level, higher than
SMM'’s level which includes BIOS)

Allows multiple modules
Allows untrusted OS

Adversarial Model of Sanctum:
- Adversary can only launch remote SW attacks
- Because of HW isolation no encryption is necessary
HW TCB = CPU chip (with caches, mem. interface), Package
- Access to DRAM by peripherals is controlled by a
trusted MCU (as in Intel SGX)
- Sanctum forbids access by untrusted OS to reserved
DRAM for Secure Enclaves
SW TCB = App. Mod. (in Secure Enclave @ lowest priv.
level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing
channel attacks using locality preserving cache-
coloring)

- Allows untrusted OS

Intel SGX follows AEGIS’ blueprint !

Authentication

" The processor identifies security kernel by computing the kernel’s
hash (on the l.enter.aegis instruction)
* Similar to ideas in TCG TPM and Microsoft NGSCB

" Security kernel identifies application programs

= H(SKernel) is used to produce a unique key for security kernel
from a PUF response (l.puf.secret instruction)
* Security kernel provides a unique key for each application

H(A
- (App) Message Authentication Code (MAC)

— A server can authenticate the processor,
@“ the security kernel, and the application
~ |
\‘ﬁi' >

H(SKernel)

Protecting Program State

« On-chip registers and caches
— Security kernel handles context switches and permission checks
in MMU

Processor External Memory

Memory Encryption: Counter-mode encryption

Integrity Verification: Hash trees

A Simple Protection Model

How should we apply the authentication

and protection mechanisms? ., o
’, Uninitialized Data
Encrypted (stack, heap)
&
What to protect? Integrity
* All instructions and data Verified |
" Both integrity and privacy \\ Initialized Data
v (.rodata, .bss)
/\
/
/
What to trust? Hash
* The entire program code > ~ Program Code
* Any part of the code can read/write protected Program Moy (Instructions)
data |dentity

Memory Space

16

What Is Wrong?

" Large Trusted Code Base
* Difficult to verify to be bug-free

= How can we trust shared libraries¢

= Applications/functions have varying security requirements
* Do all code and data need privacy?
* Do | /O functions need to be protected?

- Unnecessary performance and power overheads

= Architecture should provide flexibility so that software can choose
the minimum required trust and protection

Distributed Computation Example

DistComp() Obtaining a secret key and computing a

{ MAC
* Need both privacy and integrity

Computing the result
* Only need integrity

L 1

\ key = get_puf_secret();
|
' mac = MAC(x,result,key);

— Receiving the input and sending the result
(1/O)

} * No need for protection

" No need to be trusted

AEGIS Memory Protection

Architecture provides five different Receive(), Send|()
memory regions data
* Applications choose how to use (o .

_ g MAC() data Dynamic
Static (read-only) Dynamic 7| Encrypted
* Integrity verified Verified
* Integrity verified & encrypted Func() data

-
Dynamic (read-write) - gmic
* Integrity verified Static Encrypted
* Integrity verified & encrypted Verified

Func(), MAC

Unprotected L L !
Only authenticate code in the Receive(), Send()
verified regions

Memory Space
19

Suspended Secure Processing (SSP)

Two security levels within a process Insecure (untrusted) Modes

* Untrusted code such as Receive() and Send() Start-up
should have less privilege

L -, — — — — — -
Architecture ensures that SSP mode cannot
tamper with secure processing st
* No permission for protected memory
* Only resume secure processing at a specific point Compute

Suspend
Hash
——----\-
| R —

Secure Modgs

Certified Execution

Job Dispatcher

/

~

Program,
Data,
PKm

1) Compute H(Program) ,

7> Verify signature

(2) Program

® Verify hash

A 4

k.

&
program
executes

® {h, Outlg,,, {PKplsy,

-

Processor

,)

SKp, PKp,
{PKp}skm

3) Start: enter_aegis:
Processor computes
h=H(Program)

4) Execute = Out

®) Sign: sign_msg

\ 4

Suh et al., "AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing”, ICS, 2003

21

Digital Rights Management

Content Provider

4 O

Secure Player,
Content,

PKm

(1) Compute H(Player)

o 4

(2) Secure Player

i
@) Set up
SSL connection
(5 Order and
4 i

deliver content @

Customer’s Processor

P

SKp, PKp,
{PKp}SKm

@ Start PTE:
enter aegis
sel_aegis_mode

(uses sign_msg)

©® Decode and play

\

\

4

(7 Analog
Output

—_—

Suh et al., "AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing”, ICS, 2003

22

Implementation

Fully-functional system on an FPGA board
= AEGIS (Virtex2 FPGA), Memory (256 MB SDRAM), 1/O (RS-232)

* Based on openRISC 1200 (a simple 4-stage pipelined RISC)
= AEGIS instructions are implemented as special traps

. 1002 @ dn0ka deo
CHY0G SNV OLI000ERD

Area Estimate

|/O (UART, SDRAM ctrl, debug unit)

0.258mm?

1

—————————————

Cache IV Unit Encryption Unit
(16KB) (5 SHA-1) /= (3 AES)
0.864mm?
1.050mm? 1.075mm2| (T i/ mm
_____________________ i 1 | Cache (4KB)
Code ROM Scratch , O.5O4mm2 !
(11KB) Pad (2KB) f&iﬁ:
0.1 38mm? 0.261mm?
4
PUF 0.027mm? \/
5 I-Cache D-Cache
0.086mm (32KB) (32KB)
Core
1.815mm? 2.512mm?

0.512mm?

Synopsys DC with TSMC
0.18u lib

New instructions and
PUF add 30K gates,
2KB mem (1.12x larger)

Off-chip protection adds
200K gates, 20KB

memory (1.9x larger
total)

The area can be further
optimized

24

Performance Slowdown

Performance overhead comes from off-
chip protections

Synthetic benchmark
* Reads 4MB array with a varying stride

* Measures the slowdown for a varying cache miss-
rate

Slowdown is reasonable for realistic miss-
rates

* Less than 20% for integrity

* 5-10% additional for encryption

Slowdown (%)

D-Cache
miss-rate | |ntegrity Inli?i?/ gtg’y”“
6.25% 3.8 8.3
12.5% 18.9 25.6
25% 31.5 40.5
50% 62.1 80.3
100% 130.0 162.0

25

EEMBC/SPEC Performance

5 EEMBC kernels and 1
SPEC benchmark

EEMBC kernels have
negligible slowdown

Low cache miss-rate

Only ran 1 iteration

SPEC twolf also has
reasonable slowdown

Slowdown (%)

Benchmark Integrity In;?ig,gtg;
routelookup 0.0 0.3
ospf 0.2 3.3
autocor 0.1 1.6
conven 0.1 1.3
fbital 0.0 0.1
twolf (SPEC) 7.1 15.5

26

Outline

= Hash Tree for Memory Integrity Checking & Encryption

= AEGIS
= SGX Memory Encryption Engine (MEE)

= SGX Memory Access Protection

27

Memory Encryption Engine

= Memory Encryption Engine (MEE):
* Added in the uncore part of the processor (Memory Controller)

" Protects SGX’s Enclave Page Cache against the following physical attacks:

* Data Confidentiality: Collections of memory images of DATA written to the DRAM cannot be distinguished from random data.

* Integrity + freshness: DATA read back from DRAM to LLC is the same DATA that was most recently written from LLC to DRAM.

28

How the MEE works — in a nutshell

Core issues a transaction
— (to MEE region); e.g., WRITE

Transaction misses caches and
forwarded to Memory Controller

MC detects address belongs to
MEE region & routes transaction
to MEE

Crypto processing and... ...

MEE initiates additional memory
accesses to obtain (or write to)
necessary data from DRAM

— Produces plaintext (ciphertext)
— Computes authentication tags
— (uses/updates internal data)

— writes ciphertext + added data

CPU package

Ciphertext

Internal SRAM

A

Core

Cache

--'—"—)

DRAM

extension of the Memory

MEE Operates as an

Controller (MC)

6 RCW 2016, Memory Encryption Engine

K)

Other data:
Counters &

Unauthorized DMA
transactions that target the
PRM (Processor Reversed

Memory) range should be
aborted.

29

MEE basic setup and policy

* Memory access always at 512 bits Cache Line (CL) granularity

* Keys: randomly generated at reset by a HW DRNG module
— Accessible only to MEE hardware

* Drop-and-lock policy: upon MAC tag mismatch, MEE

* Drops the transaction (i.e., no data is sent to the LLC)

* Locks the MC (i.e., no further transactions are serviced).

* Eventually system halts & reset is required (with new keys)
Encryption Key: 128 bits

MAC Key: 128 bits
Hash Key: 512 bits

30

MEE Counter Mode

Spatial and temporal coordinates
identify every 16B block in the address space, at any time

Address has 39 bits; idx: 2 bits representing location in the CL; Version: 56 bits
COUNTER_BLOCK

‘0 PhysAdr[38:6] idx Version Ctr
(37b) (33b) (2b) (56b)

v

CONFIDENTIALITY KEY > AES128

v
Encrypted Counter Block

Plaintext (or ciphertext),
128b

Encryption of 1 CL Ciphertext (or plaintext), 128b
involves 4 AES

Operat|0ns RCW 2018 Memnrv Fnervntinn Fnnine 18

Message Authentication Code

*= MAC can be used to protected memory integrity.

But what is the problem if we only use MAC?

Replay attack

Solutions:

1. Hash Tree (Store updated root hash in TCB)

* One root hash for the whole memory

2. Stateful MAC (Store updated states in TCB)

= One state for each cache line

* How to store all the states efficiently222

32

One level data structure

On-die storage

Tag0

Tag1

Tag2

Tag3

Tag = MAC (CTR, CL)
CTR is trusted

Integrity + freshness

Too many counters in trusted region. Too

expensive!

33

Compressing it: a 2-level data structure

On-die storage

CL10

Tag10

Tag0

Tag1

Tag2

Tag3

“Stateful” MAC over Data and CTR
1st level tags protect Data

2nd level tag protects the counters
Top level tag is internal = trusted
Counters protect “freshness”
Trading internal storage with a
walk over the data structure

(complexity & performance)

34

Embedded MAC tags

Level 1

Root
(internal storage)

L10

Level O

Data

{000] (01][00z][0] < |fragoo

LOO

Tag0

Tag1

Tag2

Tag3

Embedded MAC tags into counter
cache line to save the memory
accesses.

Why don’t we embed tags
into data cache lines as well?

35

A Counter Cache Line

8 x 56-bit counters _
, ! L _ 56-bit
! cntr/ H cntr6 cntr5 | cntrd cntr3 cntr2 | cntrl | cntrO Ta
x K % A z 2
Ti:lg
56-bit counters l ICoun’rer

56-bit tags

1 bit (unused) | 7 bits | 56 bits

Internal field layout

One CL accommodates 8 counters and embedded tag

56*8+56+8=512

36

Integrity
Tree
What is the
compression
rate?¢
Metadata
Protected
data

Level 3 n37 | n36 | n35 | n34 | n33 n32 n31 n30
(root)
Level 2 Tag 20 n20 n21 n22 n23 n24 n25 n26 n27
l Counter
Level 1 Tag 10 n10 nli ni2 ni3 nl4 nls nle6 nl7
= — Cache
Lines
Level O Tag 00 n00 n01 n02 n03 n04 n05 n06 n07
Tree-covered region |
Tagl verQ verl ver2 ver3 verd versS vert ver/
|
L
PD_TagO [PD_Tagl | PD_Tag2 [PD_Tag3 | PD_Tag4 | PD_Tag5 | PD_Tagb | PD_Tag7 qu Cache Line
y Data Cache Line

Protected Data CL (ciphertext)

37

The overall compression rate

R Embedded MEE-MAC
‘ gi @
- Counters Level 2: Embedded
2 tags

Embedded tags g

tags
Versions & tags g 12+12 = 24MB

38

Comparison with Hash Tree

The MAC algorithm

Tag=L+Q e K, +Q, e K, + Q, e K, + ... + Q; ¢ K, in GF(2%) Truncated to 56 bits

Compound nonce

L

‘0
39h)

Address>>6
(33b)

CTR
(56b)

Spatial &
4

| AES128 |
¥ |
[H[127:64] L [63:0] |
Qo ® Ko — IPO
Q O Ky = IP1
Q, O K, = P2
Qs O K3 p— IP3
Qqa ®) Ka = P4
Qs O Ks p— IP5
Qg ®) Ke = IP6
Qs O K == IP7
Mod x** + x* + x> + x +1
Tag, 56b S Trunceg |« L

©ODDDDDD

T

coordinates

Multilinear universal hash
— (“Inner Product hash”)
— Operations in GF (2%%)

Masked by (truncated) AES

Truncated to 56 bits
— Why? Real world...

— |f tags and counters have
same length they can
share same internal bus

40

Does an MEE with 56-bit tags and 56-bit
counters give a sufficient security promise?

* Let’s also assume 1000 “forge-boot” attempts per sec.
— Above the CPU reset flow latency, but a nice number...

e Rollover (serial) would take at best 10.5 years
* Forgery (parallelizable) would take at best ~2M years

(or, 2 years over 1M machines doing forge-boot constantly)

41

Outline

= Hash Tree for Memory Integrity Checking & Encryption
= AEGIS
= SGX Memory Encryption Engine (MEE)

= SGX Memory Access Protection

42

S6X Memory Access Protection

MEE sits in MC, it cannot protect an enclave’s memory from software attacks.

The root of SGX’s protections against software attacks is memory access checks

which prevents the currently running software from accessing memory that does not
belong to it.

Implemented in Page Miss Handler (PMH)
PMH triggers the extra microcode for all address translations

All the SGX instructions are implemented in microcode, which introduces
many new registers for storing metadata of enclave.

43

Security Check for Memory Access

SGX adds a few security checks to the PMH. The checks
ensure that all the TLB entries created by the address
translation unit meet SGX’s memory access restrictions.

‘ Perform Address Translation using FSM ‘
¥
| Prepare TLB entry |

)

Executing

No enclave
I code?
Physical
address

Yes

in PRM? Yes
L Physical
Replace TLB address

No | entry address in PRM?

with abort No Yes
page
Insert new entry
in TLB
No Yes
- '
Set XD atttibute
on TLB entry Page Fault
!
Insert new entry
in TLB
Physical
¢7 Yes address in
EPC? No
Read EPCM entry for
the physical address l
i Page Fault
EF’CM entﬁ;““n‘k‘
[7Y8 T blocked?_—
N
Page Fault " EPCM ™

l— Yes —<\ entry typeis >— No _l

P
~PT_REG2-

~ Page Fault
entry EID equals
current enclave’s
No Yes
i {
Page Fault T —
" EPCMentry
—<__ ADDRESS equals translated >
No . virtual address? _— Yes
Madify TLB entry flags
Page Fault according to EPCM entry
v

Insert new entry in TLB ‘ 44

SGX Security Check Correctness

= Top-level invariant: At all times, all the TLB entries in every logical processor will be
consistent with SGX’s security guarantees.

= First breakdown the top level invariant into three cases on:
* whether a logical processor (LP) is executing enclave code or not

= whether the TLB entries translate virtual addresses in the current enclave’s ELRANGE

45

Case Invariants

1. At all times when an LP is outside enclave mode, its TLB may only contain physical
addresses belonging to DRAM pages outside the PRM.

2. At all times when an LP is inside enclave mode, the TLB entries for virtual
addresses outside the current enclave’s ELRANGE must contain physical addresses

belonging to DRAM pages outside the PRM.

3. At all times when an LP is in enclave mode, the TLB entries for virtual addresses
inside the current enclave’s ELRANGE (Enclave Linear Address Range) must match

the virtual memory layout specified by the enclave author.

46

Perform Address Translation using FSM

. Invariant 1

Prepare TLB entry

= At all times when an LP is outside enclave
mode, its TLB may only contain physical
addresses belonging to DRAM pages
outside the PRM.

Executing
enclave
code?

Yes
Physical
address
Yes
v
Replace TLB
NO | entry address
with abort
page

Insert new entry 4J
in TLB

47

Executing
enclave
code?

Mo Invariant 2

Yes

At all times when an LP is inside enclave mode,
the TLB entries for virtual addresses outside the
current enclave’s ELRANGE (Enclave Linear
Address Range) must contain physical addresses
belonging to DRAM pages outside the PRM.

Physical
address
in PRM?

No Yes

Virtual address
in ELRANGE?

No Yes

v v
Set XD attribute
on TLB entry Page Fault
v

Insert new entry
in TLB

48

Physical
address in
EPC?

Yes
b

Invariant 3

Read EPCM entry for No

the physical address i
v Page Fault = At all times when an LP is in enclave
Vos EPCM entry o mode, the TLB entries for virtual addresses
b blocked? j inside the current enclave’s ELRANGE
Page Fault EPCM (Enclave Linear Address Range) must
[oy ype ks Ne—y match the virtual memory layout specified
o Page Fault by the enclave author.

entry EID equals
current enclave’s

No ID?

v

Yes

Page Fault

EPCM entry

ADDRESS equals translated

No virtual address? Yes
¢ v
Modify TLB entry flags
Page Fault according to EPCM entry

v

Insert new entry in TLB

49

The entire flow

Top-level invariant: At all times, all Invariant 1
the TLB entries in every logical

processor will be consistent with

SGX’s security guarantees.

Invariant 2

Invariant 3

Perform Address Translation using FSM ‘

Physical
address

¥
Prepare TLB e |

Executing
enclave

Insert ngw entry
in/TLB

S

et XD attribute
on TLB entry

!

In

sert new entry

in TLB
/ Physical
/ es address in
entry for No
the physical address l
} Page Fault
EPCM entry
e blocked? No
Page Fault
l— Yes entry type is No _l
PT_REG?

Page Fault
entry EID equals
current enclave’s

No Yes
' '
Page Fault T
'?CM enﬁ'
—=_ ADDRESS equals translated
No —___virtual addre?&- es
Mgdify TLB entry flags
Page Fault ording to EPCM entry

'
Insert new entry in TLB 50

