
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Caching
Review

Lecture 5a

Material taken from:

1. “Cache and Virtual Memory Replacement Algorithms”, slides by Michael Smaili, Spring 2008

2. “Cache Rep;lacement Policies”, Mikko M. Lipasti, Spring 2012

3. “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical

Random Functions,” slides by G. E. Suh, C. W. O’Donnell, I. Sachdev, and S, Devadas

Memory Layout

2

Memory Hierarchy
 Provide memories of various speed and size at different points in the system.

 Use a memory management scheme which will move data between levels.
 Those items most often used should be stored in faster levels.

 Those items seldom used should be stored in lower levels.

 Cache: a small, fast “buffer” that lies between the CPU and the Main Memory which holds
the most recently accessed data.

 Virtual Memory: Program and data are assigned addresses independent of the amount of
physical main memory storage actually available and the location from which the program
will actually be executed.

 Hit ratio: Probability that next memory access is found in the cache.

 Miss rate: (1.0 – Hit rate)

 Primary goal of Cache: increase Speed.

 Primary goal of Virtual Memory: increase Space.

3

Cache Design

 Key issues are:
 Placement
 Where can a block of memory go?

 Identification
 How do I find a block of memory?

 Replacement
 How do I make space for new blocks?

 Write Policy
 How do I propagate changes?

 Consider these for caches
 Usually SRAM

 Also apply to main memory, disks

4

Placement and Identification

5

Fully Associative Mapping

6

Main Memory Cache Memory

A main memory block can map into any block in cache.

Italics: Stored in Memory

Pros/Cons

 Advantages:

 No Contention

 Easy to implement

 Disadvantages:

 Very expensive

 Very wasteful of cache storage since you must
store full primary memory address

7

SRAM Cache

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag

Direct Mapping

8

Main Memory Cache Memory

Italics: Stored in Memory

Index bits
Tag bits

Store higher order tag bits along with data in cache.

Pros/Cons

 Advantages:

 Low cost; doesn’t require an associative memory in hardware

 Uses less cache space

 Disadvantages:

 Contention with main memory data with same index bits.

9

SRAM Cache

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size

Set Associative Mapping

10

Main Memory Cache Memory

Italics: Stored in Memory

Index bits
Tag bits

Puts a fully associative cache within a direct-mapped cache.

Pros/Cons

 Intermediate compromise solution between Fully
Associative and Direct Mapping

 Not as expensive and complex as a fully associative
approach.

 Not as much contention as in a direct mapping approach.

11

SRAM Cache

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data Blocks
Index

?=
?=

?=
?=

Tag

Replacement

 How do we choose victim?
 Verbs: Victimize, evict, replace, cast out

 Many policies are possible
 FIFO (first-in-first-out)

 LRU (least recently used), pseudo-LRU

 LFU (least frequently used)

 NMRU (not most recently used)

 NRU

 Pseudo-random (yes, really!)

 Optimal

 Etc

12

LRU

 For a=2, LRU is equivalent to NMRU
 Single bit per set indicates LRU/MRU

 Set/clear on each access

 For a>2, LRU is difficult/expensive
 Timestamps? How many bits?

 Must find min timestamp on each eviction

 Sorted list? Re-sort on every access?

 List overhead: log2(a) bits /block
 Shift register implementation

13

LRU Implementation

 Have LRU counter for each line in a set

 When line accessed

 Get old value X of its counter

 Set its counter to max value

 For every other line in the set

 If counter larger than X, decrement it

 When replacement needed

 Select line whose counter is 0

14

Practical Pseudo LRU

 Rather than true LRU, use binary tree

 Each node records which half is
older/newer

 Update nodes on each reference

 Follow older pointers to find LRU victim

15

0

0

1
0

1

1

1

J

F

C

B

X

Y

A

Z

Older

Newer

True LRU Shortcomings

 Streaming data/scans: x0, x1, …, xn

 Effectively no temporal reuse

 Thrashing: reuse distance > a
 Temporal reuse exists but LRU fails

 All blocks march from MRU to LRU
 Other conflicting blocks are pushed out

 For n>a no blocks remain after scan/thrash
 Incur many conflict misses after scan ends

 Pseudo-LRU sometimes helps a little bit

16

Write Policy

 Do we allocate cache lines on a write?

 Write-allocate

 A write miss brings block into cache

 No-write-allocate

 A write miss leaves cache as it was

 Do we update memory on writes?

 Write-through

 Memory immediately updated on each write

 Write-back

 Memory updated when line replaced

17

Write-Back Caches

 Need a Dirty bit for each line

 A dirty line has more recent data than memory

 Line starts as clean (not dirty)

 Line becomes dirty on first write to it

 Memory not updated yet, cache has the only up-to-date copy of data for a dirty line

 Replacing a dirty line

 Must write data back to memory (write-back)

18

Prefetching

 Predict future misses and get data into cache

 If access does happen, we have a hit now
(or a partial miss, if data is on the way)

 If access does not happen, cache pollution
(replaced other data with junk we don’t need)

 To avoid pollution, prefetch buffers

 Pollution a big problem for small caches

 Have a small separate buffer for prefetches

 When we do access it, put data in cache

 If we don’t access it, cache not polluted

19

Advanced Topics (not covered)

 Inclusive and exclusive caches (in a cache hierarchy)

 Blocking and non-blocking caches

 Etc.

20

