
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Caching
Review

Lecture 5a

Material taken from:

1. “Cache and Virtual Memory Replacement Algorithms”, slides by Michael Smaili, Spring 2008

2. “Cache Rep;lacement Policies”, Mikko M. Lipasti, Spring 2012

3. “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical

Random Functions,” slides by G. E. Suh, C. W. O’Donnell, I. Sachdev, and S, Devadas



Memory Layout 

2



Memory Hierarchy
 Provide memories of various speed and size at different points in the system.

 Use a memory management scheme which will move data between levels.
 Those items most often used should be stored in faster levels.

 Those items seldom used should be stored in lower levels.

 Cache: a small, fast “buffer” that lies between the CPU and the Main Memory which holds 
the most recently accessed data.

 Virtual Memory: Program and data are  assigned addresses independent of the amount of 
physical main memory storage actually available and the location from which the program 
will actually be executed.

 Hit ratio: Probability that next memory access is found in the cache.

 Miss rate: (1.0 – Hit rate)

 Primary goal of Cache: increase Speed.

 Primary goal of Virtual Memory: increase Space.

3



Cache Design

 Key issues are:
 Placement
 Where can a block of memory go?

 Identification
 How do I find a block of memory?

 Replacement
 How do I make space for new blocks?

 Write Policy
 How do I propagate changes?

 Consider these for caches
 Usually SRAM

 Also apply to main memory, disks

4



Placement and Identification

5



Fully Associative Mapping

6

Main Memory Cache Memory

A main memory block can map into any block in cache.

Italics:  Stored in Memory



Pros/Cons

 Advantages:

 No Contention

 Easy to implement

 Disadvantages:

 Very expensive

 Very wasteful of cache storage since you must 
store full primary memory address

7

SRAM Cache

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag



Direct Mapping

8

Main Memory Cache Memory

Italics:  Stored in Memory

Index bits
Tag bits

Store higher order tag bits along with data in cache.



Pros/Cons

 Advantages:

 Low cost; doesn’t require an associative memory in hardware

 Uses less cache space

 Disadvantages:

 Contention with main memory data with same index bits.

9

SRAM Cache

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size



Set Associative Mapping

10

Main Memory Cache Memory

Italics:  Stored in Memory

Index bits
Tag bits

Puts a fully associative cache within a direct-mapped cache.



Pros/Cons

 Intermediate compromise solution between Fully 
Associative and Direct Mapping

 Not as expensive and complex as a fully associative 
approach.

 Not as much contention as in a direct mapping approach.

11

SRAM Cache

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data Blocks
Index

?=
?=

?=
?=

Tag



Replacement

 How do we choose victim?
 Verbs: Victimize, evict, replace, cast out

 Many policies are possible
 FIFO (first-in-first-out)

 LRU (least recently used), pseudo-LRU

 LFU (least frequently used)

 NMRU (not most recently used)

 NRU

 Pseudo-random (yes, really!)

 Optimal

 Etc

12



LRU

 For a=2, LRU is equivalent to NMRU
 Single bit per set indicates LRU/MRU

 Set/clear on each access

 For a>2, LRU is difficult/expensive
 Timestamps? How many bits?

 Must find min timestamp on each eviction

 Sorted list? Re-sort on every access?

 List overhead: log2(a) bits /block
 Shift register implementation

13



LRU Implementation

 Have LRU counter for each line in a set

 When line accessed

 Get old value X of its counter

 Set its counter to max value

 For every other line in the set

 If counter larger than X, decrement it

 When replacement needed

 Select line whose counter is 0

14



Practical Pseudo LRU

 Rather than true LRU, use binary tree

 Each node records which half is 
older/newer

 Update nodes on each reference

 Follow older pointers to find LRU victim

15

0

0

1
0

1

1

1

J

F

C

B

X

Y

A

Z

Older

Newer



True LRU Shortcomings

 Streaming data/scans: x0, x1, …, xn

 Effectively no temporal reuse

 Thrashing: reuse distance > a
 Temporal reuse exists but LRU fails

 All blocks march from MRU to LRU
 Other conflicting blocks are pushed out

 For n>a no blocks remain after scan/thrash
 Incur many conflict misses after scan ends

 Pseudo-LRU sometimes helps a little bit

16



Write Policy

 Do we allocate cache lines on a write?

 Write-allocate

 A write miss brings block into cache

 No-write-allocate

 A write miss leaves cache as it was

 Do we update memory on writes?

 Write-through

 Memory immediately updated on each write

 Write-back

 Memory updated when line replaced

17



Write-Back Caches

 Need a Dirty bit for each line

 A dirty line has more recent data than memory

 Line starts as clean (not dirty)

 Line becomes dirty on first write to it

 Memory not updated yet, cache has the only up-to-date copy of data for a dirty line

 Replacing a dirty line

 Must write data back to memory (write-back)

18



Prefetching

 Predict future misses and get data into cache

 If access does happen, we have a hit now
(or a partial miss, if data is on the way)

 If access does not happen, cache pollution
(replaced other data with junk we don’t need)

 To avoid pollution, prefetch buffers

 Pollution a big problem for small caches

 Have a small separate buffer for prefetches

 When we do access it, put data in cache

 If we don’t access it, cache not polluted

19



Advanced Topics (not covered)

 Inclusive and exclusive caches (in a cache hierarchy)

 Blocking and non-blocking caches

 Etc.

20


