CSE 5095 & ECE 4451 & ECE 5451 — Spring 2017

Lecture 5a

Caching
Review

Marten van Dijk
Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

Material taken from: University of Connecticut

1. “Cache and Virtual Memory Replacement Algorithms”, slides by Michael Smaili, Spring 2008
2. “Cache Rep;lacement Policies”, Mikko M. Lipasti, Spring 2012
UBUNN 3. “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical
Random Functions,” slides by G. E. Suh, C. W. O’Donnell, I. Sachdeyv, and S, Devadas

Memory Layout

CPU
Reglister

Increasing Cost,
Increasing Speed,
Decreasing Size

Decreasing Cost,
Decreasing Speed,
Increasing Size

Temporary
— Storage
Areas

Physical RAM Wirtual Memaory

Storage Device Types
: d Permanent

Notwork,
Ramsvabili I:t:rur:ﬂ Storage

Input Sources

Sopnmor/

Removalle l Camera, (Hhae
Mic, Sourges
Videdo

Keyboard Maouse

Memory Hierarchy

Provide memories of various speed and size at different points in the system.

Use a memory management scheme which will move data between levels.
Those items most often used should be stored in faster levels.
Those items seldom used should be stored in lower levels.

Cache: a small, fast “buffer” that lies between the CPU and the Main Memory which holds
the most recently accessed data.

Virtual Memory: Program and data are assigned addresses independent of the amount of
phTsmql main memory storage actually available and the location from which the program
will actually be executed.

Hit ratio: Probability that next memory access is found in the cache.

Miss rate: (1.0 — Hit rate)

Primary goal of Cache: increase Speed.

Primary goal of Virtual Memory: increase Space.

Cache Design

Key issues are:
Placement
Where can a block of memory go?

Identification
How do | find a block of memory?

Replacement
How do | make space for new blocks?

Write Policy
How do | propagate changes?

Consider these for caches
Usually SRAM

Also apply to main memory, disks

Placement and Identification

Memory Placement Comments

Type

Registers | Anywhere; | Compiler/programmer
Int, FP, SPR |manages

Cache Fixed in H/'W | Direct-mapped,

(SRAM) set-associative,

fully-associative
DRAM Anywhere O/S manages
Disk Anywhere O/S manages

Fully Associative Mapping

A main memory block can map into any block in cache.

Main Memory Cache Memory

Block 1 000 | Prog A Block 1 100 | Data A
Block 2 001 Prog B Block 2 010 Prog C
Block 3 010 Prog C

Block 4 011 Prog D Italics: Stored in Memory
Block 5 100 Data A

Block 6 101 Data B

Block 7 110 Data C

Block 8 111 Data D

Pros/Cons

= Advantages:

Address

= No Contention

* Easy to implement

= Disadvantages:

* Very expensive

* Very wasteful of cache storage since you must
store full primary memory address

Offset

Data Out
32-bit Address

Direct Mapping

Store higher order tag bits along with data in cache.

Cache Memory

Block 1 00 0 Prog A
Block 2 01

Block 3 10 1 Data C
Block 4 11 0 Prog D

Main Memory
Block 1 000 Prog A
Block 2 001 Prog B
Block 3 010 Prog C
Block 4 011 Prog D
Block 5 100 Data A
Block 6 101 Data B
Block 7 110 Data C
Block 8 111 Data D

Italics: Stored in Memory

Index bits

Tag bits

Pros/Cons

= Advantages:
" Low cost; doesn’t require an associative memory in hardware

= Uses less cache space

= Disadvantages:

= Contention with main memory data with same index bits.

Block Size

A
\%

Address

Data Out
32-bit Address

Set Associative Mapping

Puts a fully associative cache within a direct-mapped cache.

Main Memory Cache Memory
Block 1 000 Prog A Set1l |0 |00 |ProgA |10 |Data A
Block 2 001 Prog B Set2 |1 |11 |DataD |10 |Data B
Block 3 010 Prog C
Block 4 011 Prog D Italics: Stored in Memory
Block 5 100 Data A :

Index bits

Block 6 101 Data B Tag bits
Block 7 110 Data C
Block 8 111 Data D

Pros/Cons

Address

* Intermediate compromise solution between Fully
Associative and Direct Mapping

* Not as expensive and complex as a fully associative
approach.

* Not as much contention as in a direct mapping approach.

Cost Degree Associativity | Miss Rate Delta
$ 1-way 6.6%
$$ 2-way 5.4% 1.2
$$$$ 4-way 4.9% : Tag
$$$555$% 8-way 4.8% 1

Offset

32-bit Address Data Out

_ 11

Replacement

* How do we choose victim?
= Verbs: Victimize, evict, replace, cast out

= Many policies are possible
* FIFO (first-in-first-out)
* LRU (least recently used), pseudo-LRU
* LFU (least frequently used)
* NMRU (not most recently used)
* NRU
= Pseudo-random (yes, really!)
= Optimal
" Etc

LRU

= For a=2, LRU is equivalent to NMRU
= Single bit per set indicates LRU/MRU
= Set/clear on each access

= For a>2, LRU is difficult/expensive
= Timestamps? How many bits?

= Must find min timestamp on each eviction

= Sorted list? Re-sort on every access?

= List overhead: log,(a) bits /block
= Shift register implementation

LRU Implementation

" Have LRU counter for each line in a set

" When line accessed
= Get old value X of its counter
= Set its counter to max value

* For every other line in the set

* If counter larger than X, decrement it

* When replacement needed

= Select line whose counter is O

Practical Pseudo LRU

= Rather than true LRU, use binary tree

= Each node records which half is
older/newer

* Update nodes on each reference

= Follow older pointers to find LRU victim

True LRU Shortcomings

= Streaming data/scans: xg, Xy, .., X,
- Effectively no temporal reuse

= Thrashing: reuse distance > a
= Temporal reuse exists but LRU fails

= All blocks march from MRU to LRU

= Other conflicting blocks are pushed out

= For n>a no blocks remain after scan/thrash
* Incur many conflict misses after scan ends

= Pseudo-LRU sometimes helps a little bit

Write

Policy

" Do we allocate cache lines on a write?

" Write-allocate

* A write miss brings block into cache

* No-write-allocate

= A write miss leaves cache as it was

" Do we Upda’re memory on writese
* Write-through
* Memory immediately updated on each write

= Write-back

* Memory updated when line replaced

Write-Back Caches

Need a Dirty bit for each line

* A dirty line has more recent data than memory
Line starts as clean (not dirty)

Line becomes dirty on first write to it
* Memory not updated yet, cache has the only up-to-date copy of data for a dirty line

Replacing a dirty line

* Must write data back to memory (write-back)

Prefetching

" Predict future misses and get data into cache

* If access does happen, we have a hit now
(or a partial miss, if data is on the way)

* If access does not happen, cache pollution
(replaced other data with junk we don’t need)

= To avoid pollution, prefetch buffers
* Pollution a big problem for small caches

* Have a small separate buffer for prefetches
* When we do access it, put data in cache

= If we don’t access it, cache not polluted

Advanced Topics (not covered)

" Inclusive and exclusive caches (in a cache hierarchy)

= Blocking and non-blocking caches

= Ftc.

20

