
Marten van Dijk

Syed Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Department of Electrical & Computer Engineering

University of Connecticut

CSE 5095 & ECE 4451 & ECE 5451 – Spring 2017

Crypto Background & Concepts
SGX Software Attestation

With the help of:

1. Intel SGX Tutorial (Reference Number: 332680-002) presented at ISCA 2015

2. “Intel SGX Explained”, Victor Costan and Srinivas Devadas, CSAIL MIT

3. Computer Security taught by Aggelos Kiayias, 2006-2014

Lecture 4b

• Slide deck extracted from Kamran’s tutorial on SGX,

presented during ECE 6095 Spring 2017 on Secure

Computation and Storage, a precursor to this course

Crypto Background & Concepts

 Public Key Cryptography:

 Key Agreement

 Encryption

 Signatures

 Certificate Authority

 Key Management and Public Key Infrastructure

 Hashes and MACs

2

Key Agreement

 Secret-Key Crypto:

 Alice and Bob first agree on a secret key K

 Alice and Bob use a symmetric key encryption mechanism (such as AES) to encrypt
their messages: AES_K(message)

 Here we have the computational security assumption that the inverse (decryption) of
AES_K cannot be computed by an adversary, even with access to lots of resources
 many computation cores,

 lots of time,

 some messages with their encryptions,

 may be even adaptively chosen messages with their encryptions, …

 Perfect security, i.e. one only assumes an information theoretic (or statistical) security
assumption, is only possible if |K|=|message| and each key K can only be used for
at most one encryption

3

Key Agreement

 For symmetric key crypto, a joint/shared secret key needs to be established first

 Symmetric key crypto is very efficient

 So, once a key is agreed upon (like an attestation key), then we want to use symmetric crypto !

 Key agreement (cannot be public !!) may be based on (a physical trusted channel or) public key
cryptograph concepts,

 which is much less efficient and

 requires an “agreed upon” or “certified” public key

 needs trust in a public key infrastructure (trusted certificate authority) with trusted key management (as private/secret keys do
leak since they are maintained by SW/HW which does have vulnerabilities)

4

A Group Theoretic Problem

 Given a finite multiplicative group

 Consider a “generator” 𝑔 in this group generating cyclic subgroup
< 𝑔 > = {1, 𝑔, 𝑔2, 𝑔3, . . }

 Problem: Given ℎ in < 𝑔 >, given 𝑔, compute a solution 𝑥 such that ℎ = 𝑔𝑥 .

 Difficult: Current state-of-the-art algorithms take subexponential time in the log of
the order of the subgroup.

 It is easy to compute ℎ from 𝑔 and 𝑥 !!

5

Diffie Hellman Key Agreement

 Alice chooses 𝑥𝐴, computes 𝑔𝑥𝐴 , and transmits 𝑔𝑥𝐴 to Bob

 Bob chooses 𝑥𝐵 , computes 𝑔𝑥𝐵 , and transmits 𝑔𝑥𝐵 to Alice

 Now Alice and Bob are each able to compute (without any further help) 𝐾 = 𝑔𝑥𝐴𝑥𝐵

 Catch: How does Alice knows she has set up a key with Bob and not with a man-in-
the-middle Eve?

 Alice and Bob need a pre-established authentic channel in the first place!

6

Public Key Crypto

 Alice wants to send a message to Bob

 Bob publishes his public key

 Alice obtains Bob’s public key

 in a trusted way !! Again authenticity must be verified.

 The public key is signed by a trusted third party (a certificate authority)

 Alice encrypts the message with the public key  ciphertext

 The ciphertext is transmitted to Bob

 Bob decrypts the ciphertext with his secret key

 The public key and secret key have an algebraic relationship which allows public key encryption
together with secret key decryption

7

Public Key Encryption

 Three algorithms:

 𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘) , where k is a security parameter and 𝐺𝑒𝑛 is a probabilistic
polynomial time (ppt) algorithm, i.e. polynomial in its input size (in this case

polynomial in 𝑘 since 1𝑘 is represented by 𝑘 bits)

 𝐶 ← 𝐸𝑛𝑐𝑝𝑘(𝑀), where 𝐸𝑛𝑐 is a ppt algorithm, and

 𝑀 ← 𝐷𝑒𝑐𝑠𝑘(𝐶) with probability ≥ 1 − 𝑛𝑒𝑔𝑙(𝑘) for 𝐶 ← 𝐸𝑛𝑐𝑝𝑘 𝑀 with 𝑠𝑘 such

that 𝑝𝑘, 𝑠𝑘 ← 𝐺𝑒𝑛(1𝑘), and where 𝐷𝑒𝑐 is a ppt algorithm

 Public Key Encryption implies Key Agreement

8

Modeling Security I

9

Modeling Security II

10

Modeling Security III

11

Modeling Security IV

12

Digital Signatures

 We still want to authenticate the origin of a message or ciphertext

 Signature 𝑦 ← 𝑆𝑖𝑔𝑛𝑠𝑘(𝑀)

 Verification 𝑌𝑒𝑠 𝑜𝑟 𝑁𝑜 ← 𝑉𝑒𝑟𝑝𝑘(𝑦) verifies whether message signature pair 𝑀, 𝑦
comes from the owner of (someone who knows) the public secret key pair

13

Modeling Security

14

Crypto Background & Concepts

 Public Key Cryptography:

 Key Agreement

 Encryption

 Signatures

 Certificate Authority

 Key Management and Public Key Infrastructure

 Hashes and MACs

15

HASH

 A means to produce a “fingerprint” or “log” or “measurement” of a file:

 𝐻 ∈ 0,1 ∗ → 0,1 𝑛

 Properties

 Efficiency

 A good spread for various input distributions

 Allows a short representation of a file: Instead of 𝑀, use 𝐻(𝑀) as argument in a
signature. Now 𝐻(𝑀) “commits” to 𝑀.

 Security?

16

Attacks with Collisions

 Collision attack: Find x and y such that H(x)=H(y)

 Second pre-image attack: Given x, find y such that H(x)=H(y)

17

Attacks against Secrecy

 When hashing is used to hide data:

 Given H(M)=h, the goal is to recover M

 Called “(first) pre-image attack”

 Important for e.g. password hashing etc., generally important for hashing of secret (sensitive or
critical) data

18

Birthday Paradox
 How many people should be in a room so that the probability that two of them share a birthday becomes

larger than 50%?

Pr 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑘 𝑝𝑒𝑜𝑝𝑙𝑒 =
𝑛

𝑛

𝑛−1

𝑛

𝑛−2

𝑛
…
𝑛−𝑘+1

𝑛
= 𝑙=1

𝑘 1 −
𝑙

𝑛

≤ 𝑒−
1

𝑛
 𝑙=1
𝑘 𝑙 = 𝑒−

𝑘 𝑘+1

2𝑛

implies Pr 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =
1

2
if 𝑘 ≈ 1.177 𝑛

 Random sampling x, H(x)

 Store k pairs in a table

 Sort the table according to H(x)

 Linear pass to find if any entries have equal H(x)

 Storage k, Time ~2k+k log k, Choose k as above to obtain 50% probability of success

 The length of the hash function output is typically double the length of the key of an encryption algorithm

19

Merkle Damgard Design

20

Observation

21

The SHA Family

22

The SHA Family

23

The SHA Family

24

Nevertheless

25

SHA-3

26

MACs: Message Authentication Codes

27

Usage of MACs

28

Constructing MACs

29

SGX Software Attestation
• Measurement

• Local Attestation

• Remote Attestation

30

Isolation & Attestation

 So far, we explained how Intel SGX creates and manages secure enclaves:

 We analyzed in detail into what extend computation taking place in a secure enclave is vulnerable to
privacy leakage through a breach of the secure enclave infrastructure itself

 Hardware isolation turns out to be a powerful primitive

 SGX also has a MEE (management encryption engine) which implements basic crypto primitives:
encryption and memory integrity checking (next lecture)

 When a computation in a secure enclave produces output, we also need to be able
to verify (attest) that the output indeed originates from the enclave

 We will now explain how freshness and authenticity of results can be verified

 Basic crypto primitives turn out to be a powerful primitive

31

Why Software Attestation?
 An enclave author creates an application module which should be executed in a secure way

as it deals with sensitive information:
 First the application module should be verified using proof carrying code etc. to show that the module itself

does not have a bug which would e.g. leak sensitive info in unencrypted form in future reports etc.

 Second, even if the application module is formally verified, the module should be executed in a secure
environment which is trusted to resist strong adversaries … We want to inherit the security posture as
promised by Intel SGX

 During the application module’s computation, the enclave wants to report output to some
remote party

 How can the remote party trust the reported results to come from the enclave?
 The main idea is to challenge the enclave with e.g. a random nonce, which the enclave includes in its report

 The SGX HW signs the report with an attestation key

 The remote party now verifies the signature with a public verification key – this public key comes from a
trusted data base maintained (and certified) by Intel

 The signature should convince the remote party that the enclave’s code was executed in a secure enclave
(with its resistance to certain attacks), hence the report can as such be trusted
 Also the nonce allows to check for freshness, i.e., no replay attack is possible (replaying an old report with its signature)

 What does this signature attest to exactly? What does it imply?

32

The Report Signature
 A straightforward solution:

 When an enclave is executing, it calls EREPORT

 The SGX HW (micro code implementing EREPORT) takes over:

 It signs the

 Report (results of the computation)

 The enclave’s measurement (its identity)

 The nonce talked about before as part of the report data (the enclave puts it in before calling EREPORT)

 Use a secret key with corresponding public key certified by Intel and stored in its database

 The signature scheme is too complex to put in HW
 Need a HW/SW co-design

 The SW part needs to execute in a secure environment  A special signing (called quoting) enclave
authored by Intel

 Now we need the application enclave to communicate its report to the quoting enclave who needs to verify
its authenticity  Need local attestation

 This is a general feature: any caller enclave can communicate a report over an authentic channel to a target enclave

 The remote party should verify that the trusted quoting enclave SW has produced the signature  This is
remote attestation

33

The Attestation Key

 Intel SGX does not fuse one static attestation key

 Multiple attestation keys can be associated with an Intel SGX processor

 The processor may change ownership and for this reason a new attestation key may be issued (provisioned)
by Intel

 The signature scheme is such that ciphertexts cannot be linked through their attestation keys – unlinkability
and anonymity

 Intel SGX fuses a provision key which is also stored by Intel

 This provision key is used by a provisioning enclave to communicate with Intel to create an attestation key

 This is another example of SW/HW co-design where this provisioning is done in SW (rather than
dedicated HW)

 The attestation key need to be stored somewhere

 Intel SGX fuses a sealing key – not known to anyone but the processor itself (the processor generates its
own random key)

 The sealing key is used by the provisioning enclave for creating a provisioning sealing key for
authenticated encryption of the attestation key (which can only be decrypted by the quoting enclave)

34

Bootstrapping Trust
 We trust that the sealing key is only known by the SGX HW and the provisioning key is only

known by the SGX HW and Intel’s provisioning service

 These keys bootstrap trust in the generation of an attestation key with Intel’s provisioning service
and secure storage of the attestation key (by the Intel SGX processor)

 Intel’s service is trusted as a third party and a signature verification key belonging to the
attestation key can be retrieved by a client

 The application module in a caller enclave generates a report (with client nonce) and asks the
SGX HW to MAC the report with a MAC key derived from the target enclave’s report key and
caller enclave’s identity (measurement)
 The SGX HW extracts the report key from the target enclave’s identity (measurement) and sealing key

 The target enclave asks the SGX HW to produce its report key, and verifies the MAC after
reconstruction of the MAC key
 Note that only the SGX HW and target enclave can obtain the target enclave’s report key

 If the target enclave is the quoting enclave, then the quoting enclave can extract the attestation
key and produce an attestation signature
 Only a proper quoting enclave could have obtained the attestation key

 The client verifies the signature with the verification key

35

SGX Enclave Measurement (MRENCLAVE)

 When building an enclave, SGX generates a cryptographic log of all the build
activities

 Content: Code, Data, Stack, Heap

 Location of each page within the enclave

 Security flags being used

 MRENCLAVE (“Enclave Identity”) is a 256-bit digest of the log

 Represents the enclave’s software TCB

36

Software Attestation

 Enclave author signs a measurement of the enclave content
using its private key  SIGSTRUCT

 The enclave is created (see earlier lecture on its life cycle)
and measured  MRENCLAVE

 A special enclave authored by Intel – the SGX Launch
Enclave – is needed for remote attestation and produces
EINITTOKEN

 A special enclave authored by Intel – the SGX Quoting
Enclave – signs reports produced by EREPORT.

 This requires an attestation key which is provisioned by a
Provisioning Enclave issued by Intel

37

Attestation

SGX provides LOCAL and REMOTE attestation capabilities

 Local attestation allows one enclave to attest its Thread Control Block (TCB) (i.e., the
execution environment) to another enclave on the same platform

 Remote attestation allows one enclave to attest its TCB to another entity outside of
the platform

38

Local Attestation Overview

An application enclave proves its identity to another target
enclave via the EREPORT instruction

 Application Enclave calls EREPORT instruction to generate
REPORT structure for a desired target enclave
 REPORT contains calling enclave’s Attributes, Measurements and User

supplied data

 REPORT structure is secured using the REPORT key of the target
enclave (shared only between the target enclave and SGX
HW/microcode implementing EREPORT)

 EGETKEY is used by the target enclave to retrieve REPORT key

 Target enclave then verifies the REPORT structure using software
(the report key together with an SGX master key, i.e. processor
secret, and application enclave’s measurement etc. is used to
derive the MAC key)

39

Application Enclave

EREPORT

(REPORT Key)

Target Enclave

EGETKEY

(REPORT Key)

Verify REPORT

REPORT Generation (EREPORT)

40

AES-CMAC

Key Derivation

Target Enclave’s

Measurement &

Attributes

Owner’s Epoch

Platform Specific info

Processor’s Fused Seal Key

128-bit

Symmetric

Key

Caller Enclave’s

Measurement & Attributes

AES-CMAC

MAC

REPORT

REPORT Verification (EGETKEY)

41

AES-CMAC

Key Derivation

Caller Enclave’s

Measurement &

Attributes

Owner’s Epoch

Platform Specific info

Processor’s Fused Seal Key

128-bit

Symmetric

Key

AES-CMAC

Sender Enclave’s

Measurement & Attributes
MAC

REPORT

Equal?

Accept

Yes

Reject

No

Remote Attestation

 During manufacturing, two
keys are burned into the CPU

 Fused Seal Key

 Fused Provisioning Key

 Seal Key is used as Processor’s
secret and is generated inside
the processor and not known
to Intel

 Provisioning Key serves as a
proof for a remote Platform
and is also stored in a
database at Intel

42

Remote Attestation

 Provisioning Key serves as a
proof for remote Platform

 Remote platform issues an
Attestation Key which is
encrypted and stored for
future use.

43

Remote Attestation
 A Quoting Enclave first

performs Local Verification of
application’s Enclave

 Upon successful Local
Attestation, Quoting Enclave
decrypts the Attestation Key
and signs the REPORT with this
key

 The remote party verifies the
signature (using the public
part of the attestation key)

44

