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The Life Cycle of  an SGX Enclave

An enclave’s life cycle is all about the allocation of EPC pages.

Following are the major transitions during an SGX enclave’s life cycle:

 Creation (ECREATE)

 Loading (EADD, EEXTEND)

 Initialization (EINIT)

 Enter/Exit the Enclave (EENTER/EEXIT)

 Teardown (EREMOVE)
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Enclave Creation (ECREATE)

 Creates a unique instance of an enclave, establishes the linear address range, and 
serves as the enclave’s root of trust

 Enclave mode of operation (32/64)

 This information is stored within a Secure Enclaves Control Structure (SECS) 
generated by ECREATE.
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Loading (EADD, EEXTEND)

EADD

 Add Regular (REG) or Thread Control Structure (TCS) pages into the enclave 

 System software responsible for selecting free EPC page, type, and attributes, content of the page 
and the enclave to which the page added to.

 Initial EPCM entry to indicate type of page (REG, TCS)

 Linear address, RWX, associate the page to enclave SECS

EEXTEND

 Generates a cryptographic hash of the content of the enclave in 256Byte chunks

 EEXTEND 16 times for measuring a 4K page
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Initialization (EINIT)

 Verifies the enclave’s content against the ISV’s signed SIGSTRUCT and initializes the 
enclave – Mark it ready to be used

 Validate SIGSTRUCT is signed using SIGSTRUCT public key

 Enclave measurement matches the measurement specified in SIGSTRUCT.

 Enclave attributes compatible with SIGSTRUCT

 Record sealing identity (sealing authority, product id, SVN) in the SECS
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Synchronous Enclave Entry (EENTER)

 Check that Thread Control Structure (TCS) is not busy and flush TLB entries for 
enclave addresses.

 Transfer control from outside enclave to pre-determined location inside the enclave

 Change the mode of operation to be in enclave mode

 Save RSP/RBP for later restore on enclave asynchronous exit

 Save XCR0 and replace it with enclave XFRM value

8



Synchronous Enclave Exit (EEXIT)

 Clear enclave mode and TLB entries for enclave addresses.

 Transfer control from inside enclave to a location outside the enclave

 Mark TCS as not busy

 Responsibility to clear register state is on enclave writer!
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Teardown (EREMOVE)

 EREMOVE deallocates/removes a 4KByte page permanently from the EPC

 A page cannot be removed until there is no thread executing code inside this 
enclave.

 A SECS page cannot be removed until all the regular pages of this enclave are 
removed.

 The SECS page is removed at the very last, and this also destroys the Enclave.
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Context Switching/Exception Handling

 A context switch or exception (e.g. Interrupt) may occur during 
Enclave’s code execution.

 Enclave’s execution context must be stored

 General Purpose Registers (GPRs)

 Special Registers indicated by Requested-Feature BitMap (RFBM) register

 The area used to store an enclave thread’s execution context 
while a hardware exception is handled is called 
State Save Area (SSA)

 SSA is implemented by special EPC Page(s)

 Notice that the saved context (i.e. SSA) is protected being inside the EPC
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EPC

SECS

SSA FRAME

The State Save Area (SSA)

 State Save Area (SSA) stores the Enclave’s execution context

 SSAFRAMESIZE field in SECS defines size of the SSA frame (in 
pages)

 GPRs are saved to GPR area on top of SSA frame

 Special Feature Registers are saved into XSAVE area at bottom 
of SSA frame

 XFRM field in SECS controls the size of XSAVE area

 ECREATE instruction checks that all areas fit within an SSA frame
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SGX Enclave Life Cycle Example

13



SGX Enclave Life Cycle Example

14



SGX Enclave Life Cycle Example

15



SGX Enclave Life Cycle Example

16



SGX Enclave Life Cycle Example

17



SGX Enclave Life Cycle Example

18



SGX Enclave Life Cycle Example

19



SGX Enclave Life Cycle Example

20



SGX Enclave Life Cycle Example

21



SGX Enclave Life Cycle Example

22



SGX Enclave Life Cycle Example

23



SGX Enclave Life Cycle Example

24



SGX Enclave Life Cycle Example

25



SGX Enclave Life Cycle Example

26



SGX Enclave Life Cycle Example

27



Outline

 SGX Enclave Life Cycle

 Tracking TLB Flushes

 SGX Security Properties

 Misconceptions about SGX

 Interaction with Anti-Virus Software

28



Tracking TLB Flushes 

 In order to evict a batch of EPC pages, the OS kernel must first issue EBLOCK instructions 
targeting them. The OS is also expected to remove the EPC page’s mapping from page 
tables, but is not trusted to do so.

 After all the desired pages have been blocked, the OS kernel must execute an ETRACK 
instruction, which directs the SGX implementation to keep track of which logical processors 
have had their TLBs flushed. 

 If the OS wishes to evict a batch of EPC pages belonging to multiple enclaves, it must issue 
an ETRACK for each enclave. (Next slides show an example for a single enclave.)

 Following the ETRACK instructions, the OS kernel must induce enclave exits on all the logical 
processors that are executing code inside the enclaves that have been ETRACKed. The SGX 
design expects that the OS will use IPIs (interrupt processor instructions) to cause AEXs 
(asynchronous enclave exits) in the logical processors whose TLBs must be flushed.

 The EPC page eviction process is completed when the OS executes an EWB instruction for 
each EPC page to be evicted (see previous lecture).
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Tracking TLB Flushes

 Tracking TLB flushes is equivalent to verifying that all the logical processors (i.e., all 
the execution threads within the SGX Enclave) have exited Enclave mode at least 
once after we start tracking. 

 When a thread exits enclave mode (EEXIT or AES), the corresponding enclave address in the TLB are 
flushed.

 We rely on the SECS to store variables for tracking. 
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Tracking TLB Flushes

 ECREATE

 SECS.tracking = False

 SECS.done-tracking = False

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [.,.,.,.]
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Tracking TLB Flushes

 EBLOCK

 Targeting a batch of EPC pages to be swapped out

 ETRACK

 Start of a TLB tracking cycle

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 4

 SECS.tracked-threads = 4

 SECS.lp-mask = [0,0,0,0]
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Tracking TLB Flushes

 EEXIT

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 3

 SECS.tracked-threads = 3

 SECS.lp-mask = [1,0,0,0]
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Tracking TLB Flushes

 EENTER

 SECS.tracking = True

 SECS.done-tracking = False

 SECS.active-threads = 4

 SECS.tracked-threads = 3

 SECS.lp-mask = [1,0,0,0]
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Tracking TLB Flushes

 EEXIT / AES

 SECS.tracking = True

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]
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Tracking TLB Flushes

 EWB-VERIFY

 SECS.tracking = True

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]
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Tracking TLB Flushes

 EBLOCK

 End of a TLB tracking cycle

 SECS.tracking = False

 SECS.done-tracking = True

 SECS.active-threads = 1

 SECS.tracked-threads = 0

 SECS.lp-mask = [1,1,1,1]
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Passive Attacks
 Address translation used for page swapping

 An untrusted page table manager can swap 
pages using page faults and leak 
information

 Successful practical attacks on SGX!
 Image inferred even though it was isolated by 

SGX

 “Controlled-Channel Attacks: Deterministic Side 
Channels for Untrusted Operating Systems”, IEEE 
S&P 2015, by Y. Xu, W. Cui, and M. Peinado

 Intel’s response (by Matt Hoekstra and Frank 
McKeen) puts blame on software developers

 https://software.intel.com/en-
us/blogs/2015/05/19/look-both-ways-and-
watch-out-for-side-channels
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Other Buffers which Need Flushing?

 Processors do branch prediction and store a history of branch selections in a branch 
history buffer

 SGX does not flush this buffer  Infer control flow   Leaks privacy

 Demonstrated “Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch 
Shadowing”, eprint Nov 2016, by S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, M. 
Peinado

 EEXIT and EAS should have updated microcode which includes a flush of this buffer
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SGX Security Properties

 An isolated container whose contents receive special hardware protection. This 
translates to privacy, integrity and freshness guarantees.

 Offers a certificate-based identity system that can be used to migrate secrets 
between enclaves that have certificates issued by the same authority. More on this 
when we talk about attestation (next lecture).
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Physical Attacks

 Lack of publicly available details about the hardware implementation of SGX => 
some avenues for future exploration

 Note recent NDSS’16 paper “OpenSGX: An Open Platform for SGX Research”

 Port attack, especially Generic Debug eXternal Connection.

 Bus attack, because the data in cache is in plaintext. 

 Bus tapping attack, because SGX does not hide the memory access patterns. 

 Cache timing attack. 

 Intel Management Engine may not be protected. (Will discuss ME in a next lecture.)

 Fused seal key. -> May use PUF technology instead (a later lecture)

 Power analysis

42



Privileged Software Attacks

 The SGX design prevents malicious software from directly reading or from 
modifying the EPC pages that store an enclave’s code and data.

 This relies on two pillars (isolation principle):

 First, the SGX implementation runs in the processor’s microcode, which is 
effectively a higher privilege level to which system software has no access.

 Second, SGX’s microcode is always involved when a CPU transitions between 
enclave code and non-enclave code, and therefore regulates all interactions 
between system software and an enclave’s environment
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Memory Mapping Attacks

 SGX can prevent active attacks by rejecting undesirable address translations before 
they reach the TLB. Also, it prevents the active attacks using page swapping or stale 
TLB entries.

 Passive address translation attacks can learn the memory access patterns (as 
discussed when explaining page swapping).
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Software Attacks on Peripherals

 PCI (Peripheral Controller Interface) Express 
attacks are prevented, because MC rejects any 
DMA transfer that falls within the Processor 
Reserved Memory

 DRAM attacks (e.g. Rowhammer) are prevented 
due to MEE. 

 Firmware attacks (especially, ME’s firmware) are 
not mentioned in the documents. (ME compromise 
= DRAM attacks)

 SGX does not protect against software side-
channel attacks that rely on performance counters 
(e.g. cache misses, branch predictors).
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Cache Timing Attacks

 Cache timing attacks are not mentioned in the 
threat model. 

 A malicious system software can make it worse. 

 Control the enclave scheduling

 Control address translation

 SGX does not prevent this attack, but increases 
the difficulties: SGX’s enclave entry 
implementation could flush the core’s private 
caches. 

 The Last Level Cache is still vulnerable, because it 
is shared among all the cores. 
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Misconceptions about SGX

 Remote attestation relies on the Quoting 
Enclave with special privileges that 
allows it to access the processor’s 
attestation key. 

 This assumes the Enclave is isolated properly, 
but this is not true (e.g. cache side channel).

 Intel suggests the programmer to remove data 
dependent memory access, especially for 
crypto algorithms. 
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Misconceptions about SGX

 Enclaves Can DOS (Denial-of-service) the System Software

 The SGX design provides system software the capability to protect itself from enclaves that engage 
in CPU hogging and DRAM hogging. 

 System software needs to reserve at least one Logical Processor (LP) for non-enclave computation.

 SGX is tamper-resistant

 The chip itself does not prevent physical tampering. 
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Interaction with Anti-Virus Software

 Today’s anti-virus (AV) systems are pattern matchers.

 1. A generic loader that is undetectable by AV’s pattern matcher.

 2. Load encrypted malicious payload from Internet.

 3. Execute malicious code inside the Enclave. (botnets?)

 Possible solutions: 

 recording and filtering the I/O performed by software

 Static analysis
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