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Stack based Buffer Overflows

 On Intel’s IA-32 Architecture, the stack grows 
downward

 Each called function is allocated a ‘Stack Frame’

 Stack frame contains 

 Variables/arrays declared inside the function.

 Some metadata for program’s control flow: Frame Pointer, Return Address

 Various memory related C library functions rely 
on the programmer to specify the memory ranges 
to be read/written, e.g. strcpy, memcpy etc.

 A malicious user can exploit a C library function to write 
beyond the size of an allocated array or buffer.

 He could thus overwrite the crucial metadata, e.g. the 
‘Return Address’ to execute a malicious code.
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Heap based Buffer Overflows

 Heap memory is dynamically allocated at run-time by the application.

 As is the case with stack-based arrays, arrays on the heap can be overflowed too.

 In contrast to Stack, Heap grows upward.

 Yet same techniques, as for stack based overflows, apply to cause a heap based overflow.

 Heap doesn’t store a ‘Return Address’

 Some other data structures need to be manipulated.

 Exploits

 Overwriting heap-stored function pointers to point to malicious code.

 Manipulating a heap-allocated object’s virtual function pointers etc.

4

Code

Stack

Heap



Dangling Pointer References

 Dangling Pointer: A pointer to a memory location that has already been deallocated.

 Dereferencing of such a pointer is generally unchecked in C compiler.

 It allows an attacker to read/write a memory region which he is not allowed to!

 Exploits:

 Modification of (function pointers of) a newly allocated object through a (dangling) pointer of a 
buffer previously allocated at the same memory space.

 Manipulating/exploiting the Linux memory allocator through dangling pointers. 
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Format String Vulnerabilities

 Format functions (e.g., printf) are functions that 
have a variable amount of arguments and expect 
a format string (e.g. %d, %f) as argument. 

 When a format specifier requires an argument, the 
format function expects to find (and pops) this 
argument on the stack.
 E.g. printf(“%d”, value)  value is popped from the stack.

 Exploit: If the attacker is able to control the format 
string to a function like printf,
 He can first call printf(“%d”) without the argument (value) to 

pop and print addresses/data from the stack until he 
reaches and prints the location of the return address.

 Then he can call something like printf(“%n”, 
ptr_to_return_addr) in order to modify the return address to 
any arbitrary location.
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int main()

{

int c;

/* %n stores the number of characters

* printed so far at a location 

* pointed by the argument (&c). */

printf("geeks for %n geeks ", &c);

printf("%d", c);

return 0;

}



Example Format String Vulnerability
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• Trick is to know the number %x required in order to pop the stack till 

the address stored in user_input

• When printf(user_input) is called, 

• the %x pop values of the stack until the value 0x10014808 

appears

• %s prints the value pointed at by 0x10014808



Countermeasures

 Safe languages
 Safe languages are languages where it is generally not possible for vulnerabilities to exist as the 

language constructs prevent them from occurring.

 Examples of such languages include Java, ML and ‘safe dialects’ of C.

 Bounds checkers
 Every array indexation and pointer arithmetic is checked to ensure that a read/write to a location 

outside the allocated space is not attempted.

 Typically a lower and upper bound is also stored along with the buffer’s pointer.

 Probabilistic countermeasures
 Canaries: A secret random number (canary) is stored before an important memory location. If the 

canary has changed after some operations have been performed then an attack is detected.

 Memory obfuscation: Encrypt (usually with XOR) important memory contents using random numbers 
while these are in memory and decrypt them before they are transferred to the registers.

 Memory layout randomization: Randomize the layout of memory, for instance by loading the stack 
and heap at random addresses. 
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Countermeasures

 Virtual Memory Management (VMM) - based countermeasures

 Virtual Memory is an abstraction above the physical memory pages that are present in a computer 
system.

 Virtual Memory pages can be assigned Read/Write/Execute permissions.

 These permissions can be used to construct countermeasures.

 E.g., Non-Executable Memory based countermeasures.

 Hardened libraries

 Replace library functions with versions which contain extra checks.

 E.g., libraries which offer safer string operations: bounds checking, proper NULL termination etc.

 Runtime taint trackers

 Input is considered untrusted and thus tainted.

 When an application uses tainted information in a location where it expects untainted data, an error 
is reported.
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How Buffer Overflows work

 A program execution is broken into several 
Functions/Procedures

 Before each Function call, its data and some other 
metadata is placed on the Stack in a Stack Frame

 Return Address points to the next instruction of the 
Caller Function to be executed once this function 
returns.

 Key Observation: Modifying the Return Address 
somehow to point to an arbitrary location can be 
exploited to execute some arbitrary code!

 Buffer Overflows
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Stack Frame 

of my_func

Local Variables

buf[127]

…

buf[0]

Int i

Return Address

Saved %ebp
Instr. 1

Instr. 2

Call my_func

Instr. 3

Instr. 4

Instr. 5

…

Caller 

Function

void my_func()

{

char buf[128];

int i;

gets(buf);

// do stuff with buf

}



Stack Smashing using Buffer Overflow

How does the adversary take advantage of this code?

 Supply long input, overwrite data on stack past buffer, 
i.e. create a Buffer Overflow!

 Key observation 1: Attacker can overwrite the return 
address, make the program jump to a place of the 
attacker’s choosing!

 Key observation 2: Attacker can set return address to 
the buffer itself, include some malicious code in there!
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Stack Frame 

of my_func

Local Variables

buf[127]

…

buf[0]

Int i

Return Address

Saved %ebp
Instr. 1

Instr. 2

Call my_func

Instr. 3

Instr. 4

Instr. 5

…

Caller 

Function

void my_func()

{

char buf[128];

int i;

gets(buf);

// do stuff with buf

}

Instr. 1

Instr. 2

Instr. 3

…

Malicious 

Code



Stack Smashing using Buffer Overflow

 How does the adversary know the address of the buffer in the memory? 

 Luckily for the adversary, the Virtual Memory makes things more deterministic!

 For a given OS and program, Addresses will often be the same…

 Why would programmers write such code?

 Legacy code wasn’t exposed to the internet

 Programmers were not thinking about security 

 Many standard functions used to be unsafe (strcpy, gets, sprintf)
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Payloads of  Buffer Overflow Attack

What can the attackers do once they are executing arbitrary code through a Buffer 
Overflow Attack?

 Use any privileges of the process! 

 If the process is running as root or Administrator, it can do whatever it wants on the 
system. 

 Even if the process is not running as root, it can send spam, read files, and 
interestingly, attack or subvert other machines behind the firewall.
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What about the OS?

Why didn't the OS notice that the buffer has been overrun?

 As far as the OS is aware, nothing strange has happened! 

 The OS only gets invoked when the application does IO or IPC (inter process 
communication). 

 Other than that, the OS basically sits back and lets the program execute, relying on 
hardware page tables to prevent processes from tampering with each other's 
memory. 

 However, page table protections don’t prevent buffer overruns launched by a 
process “against itself”, since the overflowed buffer and the return address and all 
of that stuff are inside the process’s valid address space.

 OS can, however, make buffer overflows more difficult.
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Avoiding Buffer Overflows

1. Avoid bugs in C code

2. Build tools to help programmers find bugs.

3. Use a memory-safe language (JavaScript, C#, Python).
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1. Avoid bugs in C code

 Programmer should carefully check sizes of buffers, strings, arrays, etc. 

 Use standard library functions that take buffer sizes into account (strncpy() instead of strcpy(), fgets()
instead of gets(), etc.).

 Modern versions of gcc and Visual Studio warn you when a program uses unsafe 
functions like gets(). 

 In general, DO NOT IGNORE COMPILER WARNINGS. Treat warnings like errors!

 Good: Avoid problems in the first place!

 Bad: It's hard to ensure that code is bug-free, particularly if the code base is large. 
Also, the application itself may define buffer manipulation functions which do not 
use fgets() or strcpy() as primitives.
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2. Build tools to help find bugs

 We can use static analysis to find problems in source code 
before it is compiled.

 Imagine that you had a function like this:

 By statically analyzing the control flow, we can tell that “offset” is used 
without being initialized.

 Bad: Difficult to prove the complete absence of bugs, esp.   
for unsafe code like C. 

 Good: Even partial analysis is useful, since programs should 
become strictly less buggy. 

 For example, baggy bounds checking cannot catch all memory errors, 
but it can detect many important kinds

17

void foo(int *p)

{

char buf[128];

int offset;

int *z = p + offset;

bar(offset);

}



3. Use a memory-safe language

 Use a memory-safe language (JavaScript, C#, Python).

 Good: Prevents memory corruption errors by 

 Not exposing raw memory addresses to the programmer, and 

 Automatically handling garbage collection.

 Bad: Low-level runtime code DOES use raw memory addresses. 

 So, the runtime code still needs to be correct.

 Bad: Still have a lot of legacy code in unsafe languages 

 E.g. FORTRAN and COBOL

 Bad: Maybe you DO need access to low-level hardware features

 E.g., you're writing a device driver.
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Why Mitigation?

 All 3 above mentioned approaches for “Avoiding” Buffer Overflows are effective 
and widely used, but buffer overflows are still a problem in practice.

 Large/complicated legacy code written in C is very prevalent.

 Even newly written code in C/C++ can have memory errors.

 Therefore, we do need Buffer Overflow Mitigation techniques…
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Let’s revisit Buffer Overflow Attack!

 Two things going on in a "traditional" buffer overflow:

1. Adversary gains control over execution (program counter).

2. Adversary executes some malicious code.

 What are the difficulties to these two steps?

1. Requires overwriting a code pointer (which is later invoked), e.g. Return Address, Function Ptr etc.

 Canaries, Bounds Checking etc.

2. Requires some interesting/malicious code in process's memory. This is often easier than (1), because 
it is easy to put code in a buffer because of potentially buggy code!

 Non-Executable memory.

3. Requires the attacker to put this code in a predictable location, so that he can set the code pointer 
to point to the evil code!

 Address Space Layout Randomization.
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Mitigating Buffer Overflows

1. Canaries (e.g., StackGuard, gcc's SSP)

2. Bounds Checking

 Electric Fences

 Fat Pointers (HardBound, SoftBound, iMPX, CHERI)

 Use shadow data structures to keep track of bounds information (Baggy Bounds).

3. Non-Executable Memory (AMD's NX bit, Windows DEP, W^X, ...)

4. Randomized memory addresses (ASLR, stack randomization, ...)

 https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf
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https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf


Stack Frame

Local Variables

buf[127]

…

buf[0]

Int i

Return Address

Saved %ebp

O
ve

rflo
w

 D
ire

ctio
n

1. Canaries (e.g., StackGuard, gcc's SSP)

 Idea: OK to overwrite code ptr, as long as we catch it before invocation.

 One of the earlier systems: StackGuard

 Place a canary on the stack upon entry, check canary value before return.

 Usually requires source code; compiler inserts canary checks.

 Q: Where is the canary on the stack diagram?

 A: Canary must go “in front of” return address on the stack, so that any overflow which 
rewrites return address will also rewrite canary.

 Q: Suppose that the compiler always made the canary 4 bytes of the ‘a’ 
character. What's wrong with this?

 A: Adversary can include the appropriate canary value in the buffer overflow!

 Q: Can a Canary protect all buffer overflow attacks? 

 A: No! How about jumping over the canary to overwrite the Return Address?
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Canary



2. Bounds Checking

 Overall goal: Prevent pointer misuse by checking if pointers are in range.

 Challenge: In C, it can be hard to differentiate between a valid pointer and an 
invalid pointer.
 E.g. consider an array: char buf[128];

 Consider two pointers: char *y = buf+100; char *z = buf+200;

 Which pointer is valid? 

 Bounds Checking Goal: For a pointer y that is derived from x, y should only be 
dereferenced to access the valid memory region that belongs to x.
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2.1. Electric Fences

 Idea: Align each heap object with a guard page, and use page 
tables to ensure that accesses to the guard page cause a fault.

 This is a convenient debugging technique, since a heap overflow will 
immediately cause a crash, as opposed to silently corrupting the 
heap and causing a failure at some indeterminate time in the future.

 Big advantage: Works without source code modifications

 Big disadvantage: Huge overhead! There’s only one object per page, 
and you have the overhead of a dummy page which isn't used for 
“real” data.
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2.2. Fat Pointers

 Associate address ‘base’ and ‘bounds’ with each pointer.

 Base and bounds checked on each access for security!

 Problems: Performance Overhead, Incompatibility with existing software!

 Some recent work: HardBound, Softbound, iMPX, CHERI 25

void foo(char *str) {

int i=0;

char buf[16]; 

int x=0;

while (str[i] != 0) {

buf[i] = str[i]; i++;

}

}

Conventional Code

void foo(char *str) {

int i=0;

char buf[16];

int x=0;

while (str[i] != 0 && 

(buf+i > buf.base) &&

(buf+i < buf.bound))

{

buf[i] = str[i]; i++;

}

}

Bounds Checked Code



2.3. Baggy Bounds
 Basic Idea: Use shadow data structures to keep track of bounds information.

1. Round up each allocation to a power of 2, and align the start of the allocation to that power of 2.

2. Express each range limit as log2(𝐴𝑙𝑙𝑜𝑐_𝑆𝑖𝑧𝑒).
 For 32-bit pointers, only need 5 bits to express the possible ranges.

3. Store limit info in a linear array: fast lookup with one byte per entry.

4. Allocate memory at slot granularity (e.g., 16 bytes): fewer array entries.

5. Check: Original and derived pointers differ in at max log2(𝐴𝑙𝑙𝑜𝑐_𝑆𝑖𝑧𝑒) least significant bits.

26

int slot_size = 16

int *p = malloc(32); // table[ p >> log_of_slot_size] = 5;

/* Program code */

p' = p + i;

/* Bounds Check */

(p^p') >> table[ p >> log_of_slot_size ] == 0

5XOR



3. Non-Executable Memory

 Modern hardware allows specifying read, write, and execute permissions for 
memory. 

 Mark the stack non-executable, so that adversary cannot run their code.

 More generally, some systems enforce “W^X”, meaning all memory is either 
writable, or executable, but not both. (Of course, it's OK to be neither.)

 Advantage: Potentially works without any application changes. 

 Advantage: The hardware is watching you all of the time, unlike the OS.

 Disadvantage: Harder to dynamically generate code (esp. with W^X).

 Java runtimes, Javascript engines, generate x86 on the fly.

 Can work around it, by first writing, then changing to executable.
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4. Randomized Memory Addresses (ASLR)

 Observation: Many attacks use hardcoded addresses in shellcode! 

 So, we can make it difficult for the attacker to guess a valid code pointer.

 Stack randomization: Move stack to random locations, and/or place padding 
between stack variables. This makes it more difficult for attackers to determine:
 Where the return address for the current frame is located

 Where the attacker’s shellcode buffer will be located

 Randomize entire address space (Address Space Layout Randomization)

 Can this still be exploited?
 Adversary might guess randomness. 

 On 32-bit machines, there aren’t many random bits (e.g., 1 bit belongs to kernel/user mode divide, 
12 bits can't be randomized because memory-mapped pages need to be aligned with page 
boundaries, etc.). [More details: https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf]

 ASLR is more practical on 64-bit machines (easily 32 bits of randomness).
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Buffer Overflow Mitigation Summary

Which buffer overflow defenses are used in practice?

 gcc and Microsoft Visual C enable stack canaries by default.

 Linux and Windows include ASLR and NX by default.

 Bounds checking is not as common, due to:

1. Performance overheads

2. Need to recompile programs

3. False alarms: Common theme in security tools: false alarms prevent adoption of tools! 
 Often, zero false alarms with some misses better than zero misses but false alarms.
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Ex1: Smashing Stack protected by a Canary

 The program under consideration takes a 
file as input argument and parses it to 
print the hardware address stored in the 
file.

 A structure of type arp_addr stores the 
data read from the file.

 Important members of the structure are 
 len

 addr[MAX_ADDR_LEN]

 hwtype

 The correct format of input file is shown 
below
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typedef struct{

shsize_t len;

char addr[MAX_ADDR_LEN];

char* hwtype;

/* Other Members */

} arp_addr;

Type Length Address

4 B 4 B 128 B



Ex1: Smashing Stack protected by a Canary

 The print_address() function in this 
program uses a vulnerable function 
memcpy() to copy the input data to the 
internal data structure. 

 First, address length is read from input.

 Potential to specify incorrect length!

 Specified # of bytes are copied in buffer

 Possible to overwrite “hwtype”

 ‘Type’ is stored at location pointed by 
“hwtype”

 Possible to overwrite Return address if “hwtype” 
is pointing to it…!
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void print_address(char *packet)

{

arp_addr hwaddr;

/* Buggy part */

hwaddr.len = (shsize_t) *(packet + ADDR_LENGTH_OFFSET);

memcpy(hwaddr.addr, packet + ADDR_OFFSET, hwaddr.len);

memcpy(hwaddr.hwtype, packet, 4);

/* Print Address */

return; }

Type Length Address

4 B 4 B 128 B



Ex1: Smashing Stack protected by a Canary

 The malicious input stored in file is of the following 
format

 The buffer overflow overwrites “hwtype” but leaves 
the canary untouched!

 “hwtype” now points to the return address

 Writing to the location pointed by “hwtype” basically 
overwrites the return address!
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&addr 136 NOPs

4 B 4 B 136 B

Shell Code &Return_Addr



Ex2: Manipulating the Virtual Function Table Pointer (VPTR)

 In Object Oriented Programming, class 
objects are allocated on heap

 Stack Smashing Attck cannot work! 

 A virtual function of a class can have 
different definitions for two different objects 
of the same class. 

 Each class object maintains a Virtual functions Table
(VTAB) which contains pointers to all the virtual 
functions of the class and;

 A pointer to VTAB called Virtual Pointer (VPTR) which 
resides next to the class variables. 

 Depending upon the compiler, VPTR is placed before 
or after the class variables in the memory. 
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Ex2: Manipulating the Virtual Function Table Pointer (VPTR)

 In this program, name[] buffer of object A1 
can be overflown

 Potential to overwrite VPTR of A2

 However, we need to be careful while overwriting

 A virtual function call results in two pointer 
dereferences. 

 First dereference VPTR to go to VTAB

 Then dereference function pointer stored in VTAB

 We overwrite the buffer as follows:

 Overwrite A2 VPTR to point to the start of buffer

 Overwrite the start of buffer with the address of 
another location in the buffer 
 Handle double dereference

 Place the malicious code at the second location
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