
Hardware Security – Spring 2017

Marten van Dijk

together with

Kamran Haider, Chenglu Jin, Phuong Ha Nguyen

Flaws in Software Often Result in
Systems Being Compromised

Flaws in Software Often Result in
Systems Being Compromised

Flaws in Software Often Result in
Systems Being Compromised

Flaws in Software Often Result in
Systems Being Compromised

What can be done?

6

SW:
 Application code

 OS

 Hypervisor

SW has hundred thousands lines of (legacy) code: What does it do? Can it be compromised?

New future: Proof carrying code
 Goes beyond safe languages

 Not formal verification: the code is designed together with proofs of its (security) properties

 Only captures security properties we know about, i.e., adversarial capabilities we know about

Today
 Cannot rely on third party OS and Hypervisor

 Application SW is the responsibility of the application designer

 Trust in computing can only be enforced through strong cryptographic primitives based on computational hard assumptions
and HW isolation

 In theory there exists very strong crypto which allows secure computation: Prohibitively large performance overhead

 HW isolation is potentially an easy and cheap solution !! Together with small HW modules offering basic crypto
functionality, trustworthy and secure computation may be possible !!

What is the course about??
 Where does computation ultimately take place?

 In HW:
 A (multi-core) processor, e.g., Intel SGX, a micro controller (MCU), OpenSPARC on FPGA

 Specialized HW, e.g., an encryption module, sensing devices, etc

 Focus is on general computation in processor technology

 Can we trust such computation?
 Does execution of code use the correct code and the most fresh and authentic data?

 Does the HW leak information, e.g., through side channels or hardware Trojans? Does the HW allow
backdoors?

 Can output be verified to be generated by correct code and input data on proper HW managed by a
trustworthy service?

 Is the output encrypted, is data encrypted? How is confidentiality managed? We need secret keys, who is in
charge?

 What adversary do we protect against?
 Each solution deals with its own adversarial model

 Once outside the specified model, the HW/system can be attacked

 Want to reason from an economics perspective whether the adversarial model is strong enough

7

An example: Ascend (Lec7b)

8

An example: Ascend (Lec7b)

9

Retrieved data is

authentic and fresh?

Pattern of

read/write access

does not leak

privacy

Pattern of when

access happens does

not leak privacy

Confidentiality

of data and

output

Need to teach some computer architecture and crypto

Ascend (Lec7b) vs Sanctum (Lec7a)

10

Adversarial Model:

- Adversary with full physical access to the data bus

- HW TCB = CPU chip (with caches, mem. interface), Package

- SW TCB = Application processes, Trusted OS

- Not trusted: External storage, in particular, DRAM.

Leakage LLC-DRAM boundary:

- Data blocks  AES

- Timing channel of reads/writes  Periodic access

- Address access pattern of reads/writes  Path ORAM

Leakage Input/Output:

- Private user input  PKI

- Streaming in server data  Fixed I/O scheduler / AES

- Termination channel  T leaks bits

Authenticity/Freshness of DRAM  Merkle Tree

Adversarial Model:

- Adversary can only launch remote SW attacks

- HW TCB = CPU chip (with caches, mem. interface), Package

- Access to DRAM by peripherals is controlled by a

trusted MCU (as in Intel SGX)

- Sanctum forbids access by untrusted OS to reserved

DRAM for Secure Enclaves

- SW TCB = App. Mod. (in Secure Enclave @ lowest priv.

level), Sec. Monitor (@ highest priv. level)

- Allows multiple modules (Sanctum prevents cache timing

channel attacks using locality preserving cache-

coloring)

- Allows untrusted OS

We need a Root of Trust in HW

• Nowadays, untrusted IC supply chain introduces a variety of security threats.

• Many countermeasures have been proposed. In general, they are specific for one security
vulnerability in the supply chain.

• More discussion in Lec9a

11

We need a Root of Trust in HW

 What about hardware Trojans … Lec9b

 Can we really trust the package: What other side channels are possible?
E.g., the power side channel, see Lec8a and Lec8b

12

Trigger: A=B

Payload: Sum=B when A=B

A
B

Sum

Carry

1

0

B

A

A+B

B

Sel

D Q

D Q

Key storage in HW
Identification and Authentication of HW

 We can use Phyiscal Unclonable Functions …. Lec11a, Lec11b

13

Computation often needs true random numbers (Lec12a)

14

How are keys managed?

 We will not discuss this during this class … we simply assume this is done in a trusted
way (public keys are signed)

 Together with an appropriate HW root of trust assumption, HW can provide
isolation of computation

15

Scalability

 What is the scale of computation?

 Application programs run on top of an OS,
hypervisor.

 Computation may be distributed over several
nodes in a data center infrastructure.

 Small computations can be isolated, large ones
need interaction across compute nodes.

16

Complex Infrastructures

 Smart power grid (Lec12b)

 Smart city (Lec13a)

 Data center

 Automotive systems

 …

17

Outline

 Lec2a + Lab1: A deeper understanding of how code is executed on a processor
shows how e.g. a buffer overflow attack can be implemented

 Lec2b to Lec4b + Lab2: Secure processor architectures focusing on Intel SGX (with
background in computer architecture and crypto, the lab implements a cache
controller)

 Quiz

 Lec6a gives more background in crypto; Lec6b explains memory integrity checking
in Intel SGX and Aegis (one of the first academic proposals); Lab3 implements
memory integrity checking with caching

 Lec7a goes beyond Intel SGX taking its features and fixing security flaws with
minimal HW modifications

 Lec7b explains Ascend with its (strong) adversarial model which requires an
“Oblivious RAM” module

18

Outline
 Lec8a + Lec8b: Leakage of sensitive information over side channels. Lab4 is about the cache

side channel

 Lec9a + Lec9b: Specific topics, in particular, supply chain management and hardware
Trojans

 Quiz

 Lec11a + Lec11b: Physical Unclonable Functions for key storage and
identification/authentication of HW. Lab5 implements a modeling attack

 Lec12a: True random number generator

 Lec12b + Lec13a: Power grid and smart city. Lab6 asks to write an essay on the security of
automotive systems

 Lec13b to Lec14b: Various topics superficially covered (HaaS, voting machines, secure JTAG,
reverse engineering, bitcoin HW, medical devices)

 Final

19

Grading

 Current proposal:

 60%: 2 Quizes, Final each count for 20%

 42%: 6 Labs each count for 7%

 This is a pilot course

 Good news: This allows you to play a role in improving its material – where do we need additional
explanations? Given your own background, you may need to study extra for certain lectures. If you
want to capture the additional needed understanding in slides (to be inserted in existing lecture
slides), you can suggest a proposal (and we will negotiate extra % bonus grade if completed
successfully ).

 Bad news: At some moments I may push too far, for some lectures I may have had less time to
prepare … as the course design is still ongoing.

 Let’s make it a success together!!!

20

Lots of Reading

 Yes, lots of required as well as suggested reading …

 Lec2a:
 Aleph One, “Smashing the stack for fun and profit,” http://phrack.org/issues/49/14.html#article

 Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures for code injection attacks against C
and C++ programs,” ACM Computing Surveys 44(3):1-28, June 2012

 Lec2b:
 Ch 2 and App B in D. A. Patterson, “Computer architecture: A quantitative approach,” 5th edition

 Lec3a:
 J. Rutkowska, “Intel x86 considered harmful,” 2015

 “ORWL – The first open source, physically secure computer,” https://www.crowdsupply.com/design-
shift/orwl

 Chapter 5 in J. H. Saltzer and M. F. Kaashoek, “Principles of computer system design: An introduction”

 Lec3b:
 V. Coston and S. Devadas, “Intel SGX explained,” https://eprint.iacr.org/2016/086.pdf

21

Lots of Reading

 Lec4b, Lec6a:
 Sections 10.1 -- 10.4, 12.1 – 12.7 in J. Katz and Y. Lindell, “Introduction to modern cryptography”

 Sections 4.1 – 4.7, 5.1 -- 5.5 in J. Katz and Y. Lindell, “Introduction to modern cryptography”

 Lec6b:
 R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and L. Torres, “Hardware mechanisms

for memory authentication: A survey of existing techniques and engines,” Transactions on
Computational Science IV, LNCS 5340, 2009

 G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient memory integrity verification
and encryption for secure processors,” MICRO 2003

 Lec7a:
 V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions for strong software

isolation,” Usenix Security 2016

 Lec7b:
 S. H. Kamran and M. van Dijk, “Flat ORAM: A simplified write-only oblivious RAM construction for

secure processor architectures,” https://arxiv.org/pdf/1611.01571.pdf

22

Lots of Reading

 Lec9a, Lec9b:

 C. Jin and M. van Dijk, “Secure and efficient initialization and authentication protocols for SHIELD,”
https://eprint.iacr.org/2015/210

 S. H. Haider, C. Jin, and M. van Dijk, “Advancing the state-of-the-art in hardware Trojan design,”
https://arxiv.org/abs/1605.08413

 Lec11b:

 Notes to be written (lead: Phuong Ha Ngyuen)

 Lec13a to Lec14b:

 E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices: The case of smart lights,” IEEE S&P 2016

 J. Hennessey, C. Hill, I. Denhardt, V. Venugopal, G. Silvis, O. Krieger, and P. Desnoyers, “Hardware as a service –
enabling dynamic, user-level bare metal provisioning of pools of data center resources,” HPEC 2014

 S. Davtyan, A. Kiayias, L. Michel, A. Russel, and A. A. Shvartsman, “Integrity of electronic voting systems: Fallacious
use of cryptography,” SAC 2012

 M. B. Taylor, “Bitcoin and the age of bespoke silicon,” CASES 2013

 D. Kotz, K. Fu, and A. Rubin, “Security for mobile and cloud frontiers in healthcare,” Communications of the ACM,
2015

23

How to study??

 Slides and required reading is Quiz and Final material

 Lectures are about the core of the reading material: you need to be well-prepared – this requires
independence and responsibility

 Since slides will often be finalized the night before … you cannot rely on looking at these before
lecture

 Try to limit to 2 hours per reading assignment – don’t go overboard trying to understand every single
detail: I myself do not know every single detail by heart; We test conceptual understanding (possibly
with details if we provide extra info from which such detail can be extracted).

 Labs are all about implementing and simulating HW modules and attacks

 May require 7-10 hours each week

 Collaborate !! Set up a joint weekly study group – share ideas – help one another!

 Ask for help: Phuong Ha Nguyen will be our TA and will hold OH (he is traveling till Jan 31st)

24

