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Debugging Techniques

= Debugging in Atmel Studio
= Simulator mode

* On-chip debugging using debugWire interface for Xplained Mini kits
= Debugging using Assert library

* Debugging using Hardware Peripherals
- LEDs, LCD

* Observing output signals using Oscilloscope



Debugging in Atmel Studio (Simulator Mode)

= Create a new Atmel Studio project

= Select “Simulator” from the Tool Selection tab
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Starting a Debugging Session

= Build the

* From Debug tab, select “Start Debugging and Break”

= The debugger pauses at the start of main.

project. (Hit F7)
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#include <avr/io.h>

volatile int counter;
volatile int flag;

—-lint main(void)

{

// Initialize
counter = @;

tlag = 8;
while(1)
{

// increment counter
counter++;

if (counter == 108)

{
[/ toggle flag
flag ~= 1;
[/ reset counter
counter = 0;

¥



Various Windows in Debugging Session
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#include <avr/io.h> ~
int counter;
int flag;
=int main(void)
{
// Initialize
> counter = @;
flag = 0;
while(1)
{
// increment counter
counter++;
if (counter == 100)
{
// toggle flag
flag ~= 1;|
// reset counter
counter = 0;
}
}
}
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Adding a Breakpoint in Debugging Session

= Select any instruction in the code

= Right Click and insert a Breakpoint as follows
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Continue to the next Breakpoint

= After inserting a breakpoint, click Continue (F5)

® The program will stop at Breakpoint as shown in the right window.
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—-lint main(void)

{
// Initialize

| counter = @;
flag = 8;

while(1)

{
// increment counter

counter++;

if (counter == 108@)
{
[/ toggle flag
flag *= 1;

—-int main(void)
{
// Initialize
counter = @;

tlag = 9;
while(1)
{

// increment counter
| counter++;|

if (counter == 10@)
{
// togele flag
tlag = 1;



Observing Register/Variable Values at a Breakpoint

= Select particular peripheral and then the register to observe the value. (shown on left)

= Type variable names from your code in Watch Window to monitor their values. (shown on
right)

* Notice that | have ran through the loop once = counter = 1
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Other Commands in Debugging Session
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Inside ‘Debug’ tab, you’ll see various useful debugging commands.

‘Stop Debugging’ exists the debugging session.

‘Continue’ run the code until the next breakpoint.

‘Restart’ restarts the debugging session and runs the code.
‘Step Into’ steps through the code line by line.

‘Step Over’ jumps over a function and stops after executing it.
‘Step Out’ returns from the current function and stops.

‘Run to cursor’ runs down to where the cursor is.

‘Reset’ command resets the current debugging session.
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Debugging in Atmel Studio (debugWire Mode)

= On-chip debugging for Xplained Mini kits using debugWire interface is also quite similar to the

simulator mode.

= Simulator mode simulates the code as if it is running on the actual microcontroller
= debugWire allows you to actually run the code on the microcontroller while you debug it step by step.

= Connect the Xplained Mini board with your computer

* Go to the Tool tab and select mEDBG with debugWire interface.
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Starting a Debugging Session (debugWire Mode)

Build the project (hit F7) and from Debug tab, select “Start Debugging and Break”

Most likely you’ll see an error message asking you to enable DWEN fuse (as shown below).
- DWEN fuse (debugWire Enable fuse) enables the debugWeire interface on your microcontroller.
* Click “Yes’ on the error message window and enable DWEN fuse.

The debugger will pause at the start of main, just like simulator mode.

Now you may use similar debugging techniques as done in Simulator mode
= Use breakpoints to stop at a particular instruction.

= Use Watch windows to observe/set program variables.

* Use |/O view to observe/set the peripheral registers.
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Exiting a Debugging Session (debugWire Mode)
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Debugging using Assert library

" http://people.ece.cornell.edu/land /courses/ece4760/Debugging /index.htm has
many great suggestions

= One can use the assert library (hitp://en.wikipedia.org/wiki/Assert.h) to test
assertions in code

= Example:

/ /set up the debugging utility ASSERT
Hdefine  ASSERT_USE_STDERR
Hinclude <assert.h>

/ /test assertion - will print message if argument is NOT true;
assert(time<10);



http://people.ece.cornell.edu/land/courses/ece4760/Debugging/index.htm
http://en.wikipedia.org/wiki/Assert.h

Debugging using Hardware Peripherals

Debugging can also be performed by hardware peripherals.

By setting GPIO pins, for example, one can test the frequency of ISRs or certain program conditions
(i.e. PORTD |= 0x01; when something happens) and measure results with an oscilloscope.

Once the LCD lab has been done, one can also display variables and conditions on
the screen as code is executed, if there are problems.



