ECE3411 — Fall 2015

Debugging Techniques

Marten van Dijk, Syed Kamran Haider
Department of Electrical & Computer Engineering
University of Connecticut
Email: {vandijk, syed.haider}@engr.uconn.edu

UCONN

Debugging Techniques

= Debugging in Atmel Studio
= Simulator mode

* On-chip debugging using debugWire interface for Xplained Mini kits
= Debugging using Assert library

* Debugging using Hardware Peripherals
- LEDs, LCD

* Observing output signals using Oscilloscope

Debugging in Atmel Studio (Simulator Mode)

= Create a new Atmel Studio project

= Select “Simulator” from the Tool Selection tab

Test* x RIE3HH

Build
N/A N/A

Build Events
Toolchain
Selected debugger/programmer
Device
Tool
Advanced
Programming settings

Erase entire chip v

Preserve EEPROM

Select Stimuli File for Simulator

Stimuli File

Activate stimuli when in breakmode from menu Debug- = Execute Stimulifile, then continue execution

Starting a Debugging Session

= Build the

* From Debug tab, select “Start Debugging and Break”

= The debugger pauses at the start of main.

project. (Hit F7)

'_’“ Test - AtmelStudio

File

wli

Edit View VAssistX ASF Project Build Debug Tools

Windows

Start Debugging and Break
Attach to Target

Stop Debugging

Start Without Debugging
Disable debugWIRE and Close
Continue

Execute Stimulifile

Set Stimulifile

Restart

Alt+F5

Ctrl+Shift+F5

Ctri+Alt+F5

F5

#include <avr/io.h>

volatile int counter;
volatile int flag;

—-lint main(void)

{

// Initialize
counter = @;

tlag = 8;
while(1)
{

// increment counter
counter++;

if (counter == 108)

{
[/ toggle flag
flag ~= 1;
[/ reset counter
counter = 0;

¥

Various Windows in Debugging Session

4 Test (Debugging) - AtmelStudio
File Edit View VAssistX ASF Project Build Debug Tools Window Help

SHd & an9-o-8- b il |Debug

2]

Watch Window shows

» mainwhile.if -‘%I > if (counter == 100) 'IQGO
=
#include <avr/io.h> ~
int counter;
int flag;
=int main(void)
{
// Initialize
> counter = @;
flag = 0;
while(1)
{
// increment counter
counter++;
if (counter == 100)
{
// toggle flag
flag ~= 1;|
// reset counter
counter = 0;
}
}
}

Name
Program Counter
Stack Pointer
X Register
¥ Register
Z Register
Status Register
Cycle Counter
Frequency
Stop Watch

= Registers

ROO
RO1
RO2
RO3
RO4
RO5
ROB
RO7
RO8
RO9
R10
R11
R12
R13

Value
0x00000048
0x08FD
0x0104
0x08FF
0x0000
0]
44
16.000 MHz
275 s

V] Z [cal

variable values

B Autos B Locals PRI & Watch 2

Stopped

o
EE
Name Value
B AD_CONVERTER
i ANALOG_COMPARATOR

® g cru

@ TIMER_COUNTER 0
@ TIMER_COUNTER_1

@ TIMER_COUNTER 2
Btw
® B UsarTO
B watcHDOG

Name Address Value Bits.
® L4PCIFR 0x3B Ox00 0oo
LLAEIFR 0x3C 0x00 0o
® LAEIMSK 0x3D 0x00 0o
[JPCICR 0x68 0x00 000
LMEICRA 0x69 0x00 0000
@ Bravs. ox6B 0x00 00000000

® B PpeMs.. 0x6C Ox00 0000000
@pcms. 6D 000 OOO0O0CO00

Processor’s view
Window shows
processor status

ARl B, ASF Explorer "8 Solution Explorer B Properties

AUNTERRUPT |/O view Window shows
4@ PORTB
il om0 peripheral register

= Bsh

values

Adding a Breakpoint in Debugging Session

= Select any instruction in the code

= Right Click and insert a Breakpoint as follows

Goto Implementation Alt+G
Refactor (WA) 3
Surround With (WVA) k

=l Insert Snippet.. Ctri+K, Ctrl+X
=, Surround With... Ctrl+K, Ctrl+S

Breakpoint » Add Databreakpoint Ctrl+Shift+R

4J Add Watch « Insert Breakpoint
&4 QuickWatch... Shift+F9 Insert Tracepoint

Pin To Source

5% Show Mext Statement Alt+Mum *

Continue to the next Breakpoint

= After inserting a breakpoint, click Continue (F5)

® The program will stop at Breakpoint as shown in the right window.

J

—-lint main(void)

{
// Initialize

| counter = @;
flag = 8;

while(1)

{
// increment counter

counter++;

if (counter == 108@)
{
[/ toggle flag
flag *= 1;

—-int main(void)
{
// Initialize
counter = @;

tlag = 9;
while(1)
{

// increment counter
| counter++;|

if (counter == 10@)
{
// togele flag
tlag = 1;

Observing Register/Variable Values at a Breakpoint

= Select particular peripheral and then the register to observe the value. (shown on left)

= Type variable names from your code in Watch Window to monitor their values. (shown on
right)

* Notice that | have ran through the loop once = counter = 1

= = | Filter: | -2 Watch 1

Name Value | Mame Value T]FpE.'

= E EEFRUM

® EEXTERNAL_INTERRUPT ¥ counter 1 int{data}@0x0102
PORTB " -
B DORTC int{data}@0x0100
i@ PORTD
= B spl
® @TIMER_COUNTER_D

@ [@JTIMER_COUNTER_1

@ TIMER_COUNTER 2

EE R

B USARTO

2 B waTcHDOG B8 Autos B Locals ,;;ﬂ Watch 1 e RUEI P
Name Address Value Bits

® @TIFRT 0x36 5 O [[@] |

MOGTCCR 0x43 0 O @]

® @TIMSK1 0x6F 2 O @] [@]

B @Tccr1A 0x80 35 O0O@0O ae
E@TCRE x81 25 00 @@00@
® @TCCRIC 0x82 0 0a
@ TCNT1 0xB84 19 [=lalalalalalala] alalal Talal T]
@ ICR1 0x86 0 00000000 00000000

@OCR‘IB 0x8A 0 00000000 00000000

Other Commands in Debugging Session

B Test (Debugging) - AtmelStudio
File Edit View WAssistX ASF Project Build | Debug | To

Inside ‘Debug’ tab, you’ll see various useful debugging commands.

‘Stop Debugging’ exists the debugging session.

‘Continue’ run the code until the next breakpoint.

‘Restart’ restarts the debugging session and runs the code.
‘Step Into’ steps through the code line by line.

‘Step Over’ jumps over a function and stops after executing it.
‘Step Out’ returns from the current function and stops.

‘Run to cursor’ runs down to where the cursor is.

‘Reset’ command resets the current debugging session.

E ddh v

) ¥ & V| ¥
o I

Windows

Start Debugging and Break

Allach 1o larget

Stop Debugging

Start Without Debugging

Continue

Execute Stimulifile
Set Stimulifile

Restart

QuickWatch...

Step Into

Step Over

Step Out

Run To Cursor

Reset

Percepio Trace

Toggle Breakpoint
Mew Breakpoint
Delete All Breakpoints
Disable All Breakpoints

Clear All DataTips
Export DataTips ...
Import DataTips ...

Options and Settings...

Lisable debugWIRE and Close

Ctrl+Shift+F5

rl+Alt+F5

F5

Ctrl+F5
Shift+F9
F11

F10
Shift+F11
Ctrl+F10

Shift+F5

Fg
4
Ctrl+Shift+F9

Debugging in Atmel Studio (debugWire Mode)

= On-chip debugging for Xplained Mini kits using debugWire interface is also quite similar to the

simulator mode.

= Simulator mode simulates the code as if it is running on the actual microcontroller
= debugWire allows you to actually run the code on the microcontroller while you debug it step by step.

= Connect the Xplained Mini board with your computer

* Go to the Tool tab and select mEDBG with debugWire interface.

Test.c Test* X

Build

Build Events
Toolchain
Device

Tool
Advanced

N/A N/A

Interface; (| debugWIRE

Selected debugge

mEDBG = ATML2323030D58976279 ~

Programming settings

Erase only program area “

[] Preserve EEPROM

Debug settings
Keep timers running in stop mode
Cache all flash memory except

Starting a Debugging Session (debugWire Mode)

Build the project (hit F7) and from Debug tab, select “Start Debugging and Break”

Most likely you’ll see an error message asking you to enable DWEN fuse (as shown below).
- DWEN fuse (debugWire Enable fuse) enables the debugWeire interface on your microcontroller.
* Click “Yes’ on the error message window and enable DWEN fuse.

The debugger will pause at the start of main, just like simulator mode.

Now you may use similar debugging techniques as done in Simulator mode
= Use breakpoints to stop at a particular instruction.

= Use Watch windows to observe/set program variables.

* Use |/O view to observe/set the peripheral registers.

Launch Failed X

'e' Failed to launch debug session with debugWIRE. This could be caused by reset line
circuitry or disabled debugWIRE interface. Make sure that the reset line is free before
continuing. Do you want to use SPI to enable the DWEN fuse?

Yes | | No

Exiting a Debugging Session (debugWire Mode)

" Test (Debugging) - AtmelStudio

= |t is really important to exit the debugWire debugging session in a e aicsiiidy Ocouo B8
| f Windows vy I
proper WGY' Start Debugging and Break Alt+F5 |

Attach to Target

" To exit the debugging session, click on “Disable debugWire and Close”. @ stop Debugging Crl Shift+Fs

* This will first disable the DWEN fuse in the microcontroller. e e e e
Disable debugWIRE and Close
* Then it will close the debugging session. b Continue F5
Execute Stimulifile
= |f DWEN fuse is not disabled, you’ll not be able to program the [
microcontroller in ISP mode (which we want to use most frequently). I BreakA Crl+F5
64 QuickWatch... Shift+F9
5E StepInto F11
L;E Step Over F10
%= Step Out Shift+F11
*£ Run To Cursor Ctrl+F10
T Reset Shift+F5
Percepio Trace 2
Toggle Breakpoint F9
MNew Breakpoint >
Delete All Breakpoints Ctrl+Shift+F9

Clear All DataTips
Export DataTips ...
Import DataTips ...

Options and Settings...

Debugging using Assert library

" http://people.ece.cornell.edu/land /courses/ece4760/Debugging /index.htm has
many great suggestions

= One can use the assert library (hitp://en.wikipedia.org/wiki/Assert.h) to test
assertions in code

= Example:

/ /set up the debugging utility ASSERT
Hdefine ASSERT_USE_STDERR
Hinclude <assert.h>

/ /test assertion - will print message if argument is NOT true;
assert(time<10);

http://people.ece.cornell.edu/land/courses/ece4760/Debugging/index.htm
http://en.wikipedia.org/wiki/Assert.h

Debugging using Hardware Peripherals

Debugging can also be performed by hardware peripherals.

By setting GPIO pins, for example, one can test the frequency of ISRs or certain program conditions
(i.e. PORTD |= 0x01; when something happens) and measure results with an oscilloscope.

Once the LCD lab has been done, one can also display variables and conditions on
the screen as code is executed, if there are problems.

